Modelling the Timing of Betula Pubescens Budburst. I. Temperature and Photoperiod: a Conceptual Model

Total Page:16

File Type:pdf, Size:1020Kb

Modelling the Timing of Betula Pubescens Budburst. I. Temperature and Photoperiod: a Conceptual Model Vol. 46: 147–157, 2011 CLIMATE RESEARCH Published online March 8 doi: 10.3354/cr00980 Clim Res Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model Amelia Caffarra1,*, Alison Donnelly2, Isabelle Chuine3, Mike B. Jones2 1Research and Innovation Centre, Agriculture Area, Fondazione Edmund Mach, San Michele all’Adige, 38100 Trento, Italy 2Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland 3CEFE-CNRS, 1919 route de Mende, 34293 Montpellier, France ABSTRACT: The main factors triggering and releasing bud dormancy are photoperiod and tempera- ture. Their individual and combined effects are complex and change along a transition from a dor- mant to a non-dormant state. Despite the number of studies reporting the effects of temperature and photoperiod on dormancy release and budburst, information on the parameters defining these rela- tionships is scarce. The aim of the present study was to investigate the effects and interaction of tem- perature and photoperiod on the rates of dormancy induction and release in Betula pubescens (Ehrh.) in order to develop a conceptual model of budburst for this species. We performed a series of con- trolled environment experiments in which temperature and photoperiod were varied during different phases of dormancy in B. pubescens clones. Endodormancy was induced by short days and low tem- peratures, and released by exposure to a minimal period of chilling temperatures. Photoperiod dur- ing exposure to chilling temperatures did not affect budburst. Longer exposure to chilling increased growth capability (growth rate at a given forcing temperature) and decreased the time to budburst. During the forcing phase, budburst was promoted by photoperiods above a critical threshold, which was not constant, but decreased upon longer chilling exposures. These relationships between photoperiod and temperature have, as yet, not been integrated into the commonly used process- based phenological models. We suggest models should account for these relationships to increase the accuracy of their predictions under future climate conditions. KEY WORDS: Betula pubescens · Controlled environment experiments · Phenology · Photoperiod · Temperature · Dormancy · Budburst Resale or republication not permitted without written consent of the publisher 1. INTRODUCTION In order to predict and attempt to mitigate the im- pacts of climate change, in particular rising tempera- A growing number of studies worldwide have re- ture, it is crucial to understand the effect climate plays ported changes in plant and animal life cycles in re- on plant growth, of which budburst is one aspect. sponse to current climate change (for reviews see Peñu- However, the lack of understanding of the physiologi- elas & Filella 2001, Parmesan & Yohe 2003, Root et al. cal mechanisms regulating dormancy makes it difficult 2003, Menzel et al. 2006). Most of these phenological to develop widely applicable predictive models of bud- changes are highly correlated with changes in temper- burst (Hänninen 1995, Arora et al. 2003). ature, and a trend for advanced spring events (such as Experimental evidence shows that in many tree spe- leaf unfolding or flowering) is apparent for many spe- cies, the main factors triggering and releasing dor- cies (Sparks & Menzel 2002, Root et al. 2003, Menzel et mancy are photoperiod and temperature (Downs & al. 2006). Borthwick 1956, Murray et al. 1989, Myking & Heide *Email: [email protected] © Inter-Research 2011 · www.int-res.com 148 Clim Res 46: 147–157, 2011 1995, Thomas & Vince Prue 1997). The action of these interactions between the factors conditioning budburst environmental drivers is complex and changes along timing, and their control of the transitions from one the transition from a dormant to a non-dormant state. sub-phase of dormancy to the next. The integration of In addition, it has been shown that photoperiod and these interactions in a coherent model structure can temperature interact at various stages during dor- only be obtained through inter-comparable experi- mancy induction, release and quiescence (Håbjørg ments linking together observed processes and mea- 1972, Junttila 1980, Heide 1993, 2003, Myking & Heide suring the rates of plant response to changes in envi- 1995, Partanen et al. 2001). ronmental drivers (Hänninen 2006). Photoperiod affects the time at which buds enter a The aim of the present study was to investigate the phase of winter rest. Short days (ShDs) signal the onset effects and interaction of temperature and photoperiod of winter, which, in turn, triggers decreasing ‘growth on the rates of dormancy induction and release in competence’ (growth capability). Once the plant Betula pubescens, through a set of experiments, in has been exposed to a certain number of dormancy- order to develop a conceptual model of dormancy for inductive days (dormancy induction requirement), the this species. phase of endodormancy is reached, a period during More specifically, we aimed: (1) to quantify the which buds do not grow even under favourable envi- effects of photoperiod and temperature on dormancy ronmental conditions (Downs & Borthwick 1956, Håb- induction requirements and determine the effect of jørg 1972, Howe et al. 1996, Thomas & Vince Prue their interactions on subsequent bud growth, (2) to 1997, Welling et al. 1997). quantify chilling requirements, (3) to test the interac- Chilling temperatures are the main trigger for tion between photoperiod and chilling exposure on endodormancy release (Perry 1971, Sarvas 1974, Can- budburst rate and percentage, (4) to parameterise the nell & Smith 1983, Battey 2000). The concept of ‘chill- sigmoidal function describing the rate of budburst at ing temperature’ is not clearly defined, and a consis- different forcing temperatures and (5) to integrate tent response to chilling has not been detected in these experimental results with previous findings in dormant plants. To date, it is not known whether pho- order to develop a conceptual model of dormancy, toperiod plays a role in chilling fulfilment, i.e. if it which has been mathematically formalized (Caffarra affects chilling efficiency for a given temperature dur- et al. 2011, this issue) ing endodormancy release. The present study was conducted on Betula pubes- After the release of endodormancy, warm tempera- cens (birch) because it is widely distributed at boreal tures stimulate growth in buds, which then enter the and temperate latitudes (Atkinson 1992), where cli- phase of ecodormancy, i.e. have the ability to resume mate is warming more rapidly than in other regions growth when exposed to growth-promoting signals (IPCC 2007). Alteration in the phenology of B. pubes- (forcing conditions). During this phase the rate of cens is thus likely and may have important conse- growth is proportional to temperature. Ecodormant quences for ecosystem dynamics in these regions. buds burst upon accumulation of a certain heat re- quirement (Perry 1971, Hänninen 1990, Battey 2000). However, it has been shown in some species that addi- 2. MATERIALS AND METHODS tional chilling during this period decreases the heat requirement for budburst to occur (Nienstaedt 1966, 2.1. Selection and vegetative propagation of the Landsberg 1974, Couvillon & Erez 1980, Heide 1993, experimental material Myking & Heide 1995). Photoperiod has been found to interact with temperature during the ecodormant The experiments were conducted on the Betula pu- period. In Betula pubescens and B. pendula, long days bescens (Ehrh.) (birch) clone grown in the Interna- (LDs) appear to substitute partially for the effect of tional Phenological Gardens (IPGs) network, which low temperatures and decrease the heat requirement comprises 89 garden sites throughout Europe (www. for budburst to occur (Myking & Heide 1995). agrar.hu-berlin.de/struktur/institute/nptw/agrarmet/ The response of the rate of bud growth of young phaenologie/ipg/ipg_allg-e). The clone under study, seedlings to increasing temperature has a sigmoidal originally from Germany, was propagated vegeta- shape (Sarvas 1972). tively, in order to obtain experimental material with a Despite the number of studies reporting the effects homogenous genotype, and therefore any observed of temperature and photoperiod on dormancy release differences could be attributed to environmental con- and budburst, information on the parameters defining ditions rather than genotypical differences among these relationships is scarce (Kramer 1994, Hänninen plants. The clones in the current experiments were 2006). The development of a process-based model of propagated using softwood cuttings, taken from the budburst requires a quantitative description of the soft, new growth of the tree, as described by Hartmann Caffarra et al.: Modelling the timing of B. pubescens budburst. I. 149 et al. (1997). In 2003 we took 300 softwood cuttings 2.3. Manipulations from the B. pubescens IPG clone growing at the John Fitzgerald Kennedy Arboretum in Wexford (Ireland, 2.3.1. Expt 1 — Effects of forcing temperature IPG No.14). After collection, the softwood cuttings were treated with rooting powder (0.4% 1-naphtha- On 28 February of Year 1, 60 dormant twigs of Betula leneacetic acid, NAA) and placed in compost-filled pubescens were removed from the parent plant, which trays before being transferred to a mist unit until root- was growing outdoors in IPG 14. Thus, up to that date, ing took place (approximately 6 wk later). The rooted the twigs had
Recommended publications
  • Is Human Hibernation Possible?
    ANRV334-ME59-12 ARI 16 December 2007 14:50 Is Human Hibernation Possible? Cheng Chi Lee Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030; email: [email protected] Annu. Rev. Med. 2008. 59:177–86 Key Words The Annual Review of Medicine is online at hypothermia, 5-AMP, torpor, hypometabolism http://med.annualreviews.org This article’s doi: Abstract 10.1146/annurev.med.59.061506.110403 The induction of hypometabolism in cells and organs to reduce is- Copyright c 2008 by Annual Reviews. chemia damage holds enormous clinical promise in diverse fields, in- All rights reserved cluding treatment of stroke and heart attack. However, the thought 0066-4219/08/0218-0177$20.00 that humans can undergo a severe hypometabolic state analogous to hibernation borders on science fiction. Some mammals can enter a severe hypothermic state during hibernation in which metabolic activity is extremely low, and yet full viability is restored when the animal arouses from such a state. To date, the underlying mecha- nism for hibernation or similar behaviors remains an enigma. The beneficial effect of hypothermia, which reduces cellular metabolic demands, has many well-established clinical applications. However, severe hypothermia induced by clinical drugs is extremely difficult and is associated with dramatically increased rates of cardiac arrest for nonhibernators. The recent discovery of a biomolecule, 5-AMP, which allows nonhibernating mammals to rapidly and safely enter severe hypothermia could remove this impediment and enable the wide adoption of hypothermia as a routine clinical tool. 177 ANRV334-ME59-12 ARI 16 December 2007 14:50 INTRODUCTION ing mammals.
    [Show full text]
  • Journal Vol 18 No 1 & 2, September 2002
    Journal of the British Dragonfly Society Volume 18 Number I & 2 September 2002 Editor Dr Jonathan Pickup TheJournal ofthe Bn/ish DragonflySociely, published twice a year, contains articleson Odonata that have been recorded from the United Kingdom and articles on EuropeanOdonata written by members of the Society. The aims of the British Dragonfly Society(B.D.S.) are to promote and encourage the study and conservation ofOdonata and their natural habitats, especially in the United Kingdom. Trustees of the British Dragonfly Society Articles for publicanon (twopaper copes er ('.Ir copy plus disk please) should be sent rothe Chairman: T G. Beynon Editor. Instructions for authors appor inside Vice�Chairma,,: PM. AUen back cover. SecrellJry: W. H. Wain '1rriJJuru: A. G. T Carter Back numbers of the Journal can be purchased Edilnr, J. Pickup from the Librarian/Archivist at ConV<nOrof Dragonfly ConstnJal"'" Group, 1-4 copies £2.75 percopy, P Taylor 5 copies or over £2.60 per copy (members) or £5.50 (non-mcmbe.. ). Ordinary Trustees: M. T Avcrill Ordinary membership annual subscription D.J. Pryce D. Gennard £10.00. D. J. Mann Overseas subscription £12.50. All subscriptions are due on 1st April each year. Late payers will be charged £1 extra. ADDRESSES Life membership subscription £1000. Edilor: Jonathan Pickup, Other subscription rates (library, corporate) on 129 Craigleith Road, application to the Secretary, who will also deal Edinburgh EH4 2EH with membership enquiries. e�mail: [email protected] SW'eUJry: W. H. Wain, The Haywain, Hollywater Road, Bordon, Hants GU35 OAD Ubrarian/Arr:III'VtSl: D.
    [Show full text]
  • Starting the Winter Season: Predicting Endodormancy Induction Through Multi-Process Modeling. Guillaume Charrier
    Starting the winter season: predicting endodormancy induction through multi-process modeling. Guillaume Charrier To cite this version: Guillaume Charrier. Starting the winter season: predicting endodormancy induction through multi- process modeling.. 2021. hal-03065757v2 HAL Id: hal-03065757 https://hal.inrae.fr/hal-03065757v2 Preprint submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Starting the winter season: predicting endodormancy induction in walnut 2 trees through multi-process modeling. 3 4 Running title: Predicting endodormancy induction in walnut trees 5 6 Guillaume Charrier1 7 1Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France 8 *: corresponding author 9 Email: [email protected] 10 Tel: +33 4 43 76 14 21 11 UMR PIAF, INRAE Site de Crouel 12 5, chemin de Beaulieu 13 63000 Clermont-Ferrand 14 1 1 Abstract 2 Background and Aims 3 In perennial plants, the annual phenological cycle is sub-divided into successive stages whose 4 completion will lead directly to the onset of the following event. A critical point is the transition 5 between the apparent vegetative growth and the cryptic dormancy. To date, the initial date for 6 chilling accumulation (DCA) is arbitrarily set using various rules such as fixed or dynamic dates 7 depending on environmental variables.
    [Show full text]
  • What's That Big Building Going up in Carter?
    Volume 3, Issue 1 Land & Natural Resources Quarterly Newsletter J a n u a r y — March 2013 Potawatomi Forest County What’s That Big Building Going Up In Carter? The dance arbor floor is constructed from I n s i d e he Forest County Potawatomi 100% recycled rubber scrap tires that would this issue: T Powwow Grounds!! otherwise be land filled. P l a n n i n g 1 The Forest County Potawatomi Community Department is constructing a permanent Powwow Grounds just down the hill from the W a t e r 2 - Potawatomi Carter Casino in Carter, WI. Department 3 The project includes a Dance Arbor, Show- N e w 4 er, Restrooms, Parking Area, Camping, Fire Pit and Kitchen/Social Arbor. E m p l o y e e s W i l d l i f e 5 - Every year millions of rubber tires are thrown away and are one of the most prob- 6 Earth Friendly. Each 24" x 24" lematic sources of waste. Safety tile is made from scrap tires. B o t a n y / 7 - W e t l a n d s 8 P h o t o s 9 C o n t a c t s 9 If you have any questions regarding the Powwow Grounds or would like a tour please contact the FCPC Planning Department at 715/478-4944. Land & Natural Resources Quarterly Newsletter Page 2 Bug Lake Winter Fisheree Adult Youth Northern Pike Northern Pike FCPC Natural Joe Shepard 34 3/4” Israel Alloway 22 1/4” Resources Jamie Tuckwab 18” Ryana Alloway 17” Jason Spaude 15 1/4” Hunter Tuckwab 16 1/2” Department once again hosted the Largemouth Bass Largemouth Bass annual Bug Lake Joe Brown Sr.
    [Show full text]
  • Hecht-Höger and Gábor Á
    Development and application of novel immunological approaches to chiropteran immunology Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Alexander Hecht-Höger 2019 The work described in this dissertation was performed from 1st of October 2011 to 2nd of April 2019 at the Leibniz Institute for Zoo and Wildlife Research in Berlin under the supervision of Prof. Dr. Alex Greenwood and Dr. Gábor Á Czirják and was submitted to the Department of Biology of Freie Universität Berlin. 1. Reviewer: Prof. Dr. Alex D. Greenwood 2. Reviewer: Prof. Dr. Heribert Hofer Date of Disputation: 12.09.2019 This thesis is based on the following manuscripts 1. Hecht, A. M., Braun, B. C., Krause, E., Voigt, C. C., Greenwood, A. D., & Czirják, G. Á. (2015). Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Scientific Reports, 5, 16604. https://doi.org/10.1038/srep16604. 2. Hecht-Höger, A. M., Braun, B. C., Krause, E., Meschede, A., Krahe, R., Voigt, C. C., Zychlinsky, A., Greenwood, A. D., & Czirják, G. Á. Plasma proteomic profiles differ between European and North American Myotid bats with White-Nose Syndrome. In preparation. 3. Hecht-Höger, A. M., Chang, H. D., Wibbelt, G., Wiegrebe, L., Berthelsen, M. F., Greenwood, A. D., & Czirják, G. Á. Cross-reactivity of human and murine antibodies against major lymphocyte markers in three chiropteran species. In preparation. Content Content CHAPTER 1 – General Introduction ..................................................................................... 1 1.1.Background of eco-immunology ...................................................................................... 3 1.2.Methods used in eco-immunology ..................................................................................
    [Show full text]
  • Flower Clocks, Time Memory and Time Forgetting
    1 Flower clocks, time memory and time forgetting Wolfgang Engelmann and Bernd Antkowiak Universität Tübingen 2016 Copyright 1998 Wolfgang Engelmann. corrected August 2002 and Mai 2004. 2007 Text and illustrations revised. New edition 2016. This book consists of 189 pages. It was written by using LYX, a professional system for typesetting docu- ments http://www.lyx.org. It uses the typesetting sys- tem LATEX. Vector grafic illustrations were produced with xfig and Inkscape under Linux. For diagrams PyxPlot was used. An older English and German Version is available under http://nbn-resolving.de/urn:nbn:de:bsz: 21-opus-38007 and http://nbn-resolving.de/urn:nbn: de:bsz:21-opus-38017. Dedicated to Karlheinz Baumann in admiration of his nature movies Contents 1 Flower clocks 3 1.1 Opening, closing and wilting of flowers..... 3 1.1.1 How Kalanchoe-flowers move...... 4 1.1.2 Internal clock opens Kalanchoe flowers. 9 1.1.3 Circadian clock at various temperatures 13 1.2 A flower clock in the school garden . 15 2 Flowers and insects 23 2.1 Time sense of bees................ 28 2.2 Pollination tricks of plants............ 36 2.3 Fragrance of flowers and fragrance rhythms . 43 2.4 How to earn money with leafcutter bees . 55 3 Our head clock 69 4 Diapause: How insects hibernate 75 4.1 How a midge fools the pitcher plant . 75 4.2 Colorado beetle buries in the fall . 86 4.3 How the silkmoth babies survive the winter . 96 4.4 Diapause is better than freezing to death . 101 4.4.1 Earlier diapause in areas with early winter112 ii Contents 4.4.2 Diapause-eyes .
    [Show full text]
  • GN-120-Botany.Pdf
    Botany 120-1 Reference / Supplemental Reading • CMG GardenNotes on Botany available on-line at www.cmg.colostate.edu #121 Horticulture Classification #122 Taxonomic Classification #131 Plant Structures: Cells, Tissues, and Structures #132 Plant Structures: Roots #133 Plant Structures: Stems #134 Plant Structures: Leaves #135 Plant Structures: Flowers #136 Plant Structures: Fruit #137 Plant Structures: Seeds #141 Plant Growth: Photosynthesis, Respiration and Transpiration #142 Plant Growth Factors: Light #143 Plant Growth Factors: Temperature #144 Plant Growth Factors: Water #145 Plant Growth Factors: Hormones • Reference Books o Botany for Gardeners. Brian Capon. Timber Press. o Gardener’s Latin: A Lexicon. Bill Neal. o Introduction to Botany. James Schooley. Delmar Publishers. o Manual of Woody Landscape Plants, Fifth Edition. Michael A. Dirr. Stipes. 1998. o Hartman’s Plant Science, Fourth Edition. Margaret J. McMahon, Anthon M. Kofranek, and Vincent E. Rubatzky. Prentice Hall. o The Why and How of Home Horticulture. D.R. Bienz. Freeman. 1993. o Winter Guide to Central Rocky Mountain Shrubs. Co. Dept. of Natural Resources, Div. of Wildlife. 1976. • Web-Based References on Plant Taxonomy o International Plant Name Index at www.ipni.org o U.S. Department of Agriculture Plant Data Base at http://plants.usda.gov Basic Botany curriculum developed by David Whiting (retired), with Joann Jones (retired), Linda McMulkin, Alison O’Connor, and Laurel Potts (retired); Colorado State University Extension. Photographs and line drawings by Scott Johnson and David Whiting. Revised by Mary Small, CSU Extension o Colorado Master Gardener Training is made possible, in part, by a grant from the Colorado Garden Show, Inc. o Colorado State University, U.S.
    [Show full text]
  • Biological Assessment for Coronado National Forest Livestock Grazing Program
    Biological Assessment for Coronado National Forest Livestock Grazing Program February 2019 Table of Contents Frequently Used Acronyms .......................................................................................................................... iii Introduction .................................................................................................................................................. 1 Consultation History ..................................................................................................................................... 1 Proposed Action ............................................................................................................................................ 1 Forest Plan Standards and Guidelines for Range Program ....................................................................... 1 Allotments and Permits ........................................................................................................................ 4 Project and Action Areas........................................................................................................................... 9 Conservation Measures .......................................................................................................................... 10 General Conservation Measures ......................................................................................................... 10 Species-specific Conservation Measures ...........................................................................................
    [Show full text]
  • Phenology and Plant Species Adaptation to Climates of the Western United States
    Phenology and Plant Species Adaptation to Climates of the Western United States p Station Bulletin 632 September 1978 Agricultural Experiment Station Oregon State University, Corvallis Contents SUMMARY 1 Onset of Rest 2 INTRODUCTION 1 Chilling to Break Rest 2 LITERATURE REVIEW 1 Bud Break and Growth 3 Genetic Factors 1 MATERIALS AND METHODS 5 Sequential Phenology 2 RESULTS AND DISCUSSION 5 Cessation of Growth 2 LITERATURE CITED 14 About This Bulletin This bulletin was developed from the combined Colorado USDA efforts of the members of Western Region Cooperative M. J. Burke J. T. Raese project W-130, Improving Stability of Deciduous Fruit A. H. Hatch Production by Reducing Freeze Damage. M. W. Williams Cooperating agencies: The agricultural experiment Hawaii National Weather stations of California, Colorado, Hawaii, Idaho, Min- R. M. Bullock Service nesota, Montana, New Mexico, Oregon, Utah, Washing- E. M. Bates ton,theU.S.DepartmentofAgricultureFederal Idaho Research, and theU.S. Department of Commerce A. A. Boe Washington National Weather Service. W. J. Kochan D. 0. Ketchie Administrative Advisor: J. M. Lyons, California. Minnesota E. L. Proebsting, Jr. Technical Committee members: P. H. Li C. Stushnoff Oregon Montana M. N. Westwood H. N. Metcalf P. B. Lombard New Mexico W. M. Mellenthin J. N. Corgan Under the procedure of cooperative publications, c. Weiser this regional report becomes, ineffect, an identical T. Sullivan publication of each of the cooperating agencies, and California Utah is mailed under the frank and indicia of each. Limited G. C. Martin supplies of this publication are available at the sources J. L. Anderson K. Ryugo listed above.Itis suggested that requests be sent to A.
    [Show full text]
  • National Forests in the Sierra Nevada: a Conservation Strategy
    NATIONAL FORESTS IN THE SIERRA NEVADA: A CONSERVATION STRATEGY AUGUST 2012 REVISED MARCH 14, 2013 National Forests in the Sierra Nevada: A Conservation Strategy Recommended Citation: Britting, S., Brown, E., Drew, M., Esch, B., Evans, S. Flick, P., Hatch, J., Henson, R., Morgan, D., Parker, V., Purdy, S., Rivenes, D., Silvas-Bellanca, K., Thomas, C. and VanVelsor, S. 2012. National Forests in the Sierra Nevada: A Conservation Strategy. Sierra Forest Legacy. August 27, 201; revised in part March 14, 2013. Available at: http://www.sierraforestlegacy.org Preparation This strategy was developed by a team of scientists and resource specialists from a variety of conservation organizations. The following individuals led the literature review and synthesis and worked with colleagues to develop the recommendations for specific topic areas. Contributor Affiliation Contribution Susan Britting, Ph. D. Sierra Forest Legacy Editor, planning and integration, landscape connectivity, aquatic ecosystems (co-lead), species accounts Emily Brown Earthjustice Adaptive management Mark Drew, Ph. D. California Trout Aquatic ecosystems (co-lead) Bryce Esch The Wilderness Society Species accounts Steve Evans Friends of the River Wild and Scenic Rivers Pamela Flick Defenders of Wildlife Species at risk Jenny Hatch California Trout Invasive species, species accounts Ryan Henson California Wilderness Coalition Wilderness and roadless area protection Darca Morgan Sierra Forest Legacy Old forests, forest diversity, species accounts Vivian Parker Sierra Forest Legacy
    [Show full text]
  • Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination
    Article Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination Jesús Rojo 1 , Fabio Orlandi 2,* , Ali Ben Dhiab 3, Beatriz Lara 1, Antonio Picornell 4 , Jose Oteros 5 , Monji Msallem 3, Marco Fornaciari 2 and Rosa Pérez-Badia 1 1 Institute of Environmental Sciences (Botany), University of Castilla-La Mancha, 45071 Toledo, Spain; [email protected] (J.R.); [email protected] (B.L.); [email protected] (R.P.-B.) 2 Department of Civil and Environmental Engineering, University of Perugia, 06121 Perugia, Italy; [email protected] 3 Laboratory of Palynology, Olive Tree Institute, BP. 208, Tunis 1082, Tunisia; [email protected] (A.B.D.); [email protected] (M.M.) 4 Department of Botany and Plant Physiology, University of Malaga, 29071 Malaga, Spain; [email protected] 5 Department of Botany, Ecology and Plant Physiology, University of Cordoba, 14071 Cordoba, Spain; [email protected] * Correspondence: [email protected] Received: 11 June 2020; Accepted: 28 July 2020; Published: 1 August 2020 Abstract: Research Highlights: This paper compares the thermal requirements in three different olive-growing areas in the Mediterranean region (Toledo, central Spain; Lecce, southeastern Italy; Chaal, central Tunisia). A statistical method using a partial least square regression for daily temperatures has been applied to study the chilling and heat requirements over a continuous period. Background and Objectives: The olive is one of the main causes of pollen allergy for the population of Mediterranean cities. The physiological processes of the reproductive cycle that governs pollen emission are associated with temperature, and thermal requirements strongly regulate the different phases of the plant’s life cycle.
    [Show full text]
  • Mammals of Toronto
    WINNER OALA AWARD FOR SERVICE TO THE ENVIRONMENT MAMMALS OF TORONTO A GUIDE TO THEIR REMARKABLE WORLD • City of Toronto Biodiversity Series • Imagine a Toronto with flourishing natural habitats and an urban environment made safe for a great diversity of wildlife species. Envision a city whose residents treasure their daily encounters with the remarkable and inspiring world of nature, and the variety of plants and animals who share this world. Take pride in a Toronto that aspires to be a world leader in the development of urban initiatives that will be critical to the preservation of our flora and fauna. Cover photo: Ken Sproule Juvenile Red Fox – The red fox is an integral part of Toronto’s wildlife community, occupying diverse habitats from the lakeshore to ravines and woodlots and even people’s backyards on occasion. It is well adapted to live in the city. City of Toronto © 2012 “Deer Mouse and Wild Grapes”, 2003 © Robert Bateman ISBN 978-1-895739-65-7 1 “Indeed, in its need for variety and acceptance of randomness, a flourishing TABLE OF CONTENTS natural ecosystem is more like a city than like a plantation. Perhaps it will be Welcome from Margaret Atwood and Graeme Gibson ................. 2 the city that reawakens our understanding and appreciation of nature, in all Introduction to the Mammals of Toronto ......................... 2 its teeming, unpredictable complexity.” – Jane Jacobs Ojibway Legend – “How Bats Came to Be” ........................ 3 Yesterday’s Habitats of Toronto ............................... 4 Today’s Habitats of Toronto .................................. 8 Importance of Corridors ................................... 10 Subsidized Urban Wildlife .................................. 11 Introduced, Expanding and Declining Species ....................
    [Show full text]