Ausgewählte Literatur

Total Page:16

File Type:pdf, Size:1020Kb

Ausgewählte Literatur 327 Literatur Ausgewählte Literatur Es wird ein kurzer Überblick über die neuere Literatur gegeben, um die Spannbreite in der Thematik des Wörterbuchs zu verdeutlichen. Außerdem enthält die Liste einige „Klassiker“ und ergänzende Wörterbücher. AllaBy, M. (ed.) (2005): The Oxford Dictionary of Ecology. 3rd ed. Oxford: Oxford University Press. AllaN, J.D., Castillo, M.M. (2007): Stream Ecology. 2nd ed. Dordrecht, Heidelberg: Springer. Allee, W.C., EmersoN, A.E., park, O., park, Th., sChmidt, K.P. (1949): Principles of Animal Ecology. Philadel- phia, London: Saunders. aNdrewartha, H.G., BirCh, L.C. (1954): The Distribution and Abundance of Animals. Chicago, London: Uni- versity of Chicago Press. aNdrewartha, H.G., BirCh, L.C. (1985): The Ecological Web: More on the Distribution and Abundance of An- imals. Chicago, London: University of Chicago Press. Bahadir, M., Parlar, H., Spiteller, M. (Hrsg.) (2000): Springer Umweltlexikon. 2. Aufl. Berlin, Heidelberg, New York: Springer. Bardgett, R.D. (2005): The Biology of Soils. Oxford: Oxford University Press. Bardgett, R., Usher, M., hopkiNs, D. (eds.) (2005): Biological Diversity and Function in Soils. Cambridge: Cambridge University Press. Bardgett, R., Wardle, D.A. (2010): Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Pro- cesses, and Global Change. Oxford: Oxford University Press. BeeBee, T.J.C., Rowe, G. (2004): An Introduction to Molecular Ecology. Oxford: Oxford University Press. BegoN, E., TowNseNd, C.R., Harper, J.L. (2006): Ecology: From Individuals to Ecosystems. 4th ed. Malden, Ox- ford: Blackwell Publishing. [Deutsche Übersetzung der 3. Auflage:B egoN, M., harper, J.L., towNseNd, C.R. (1996): Ökologie. Heidelberg, Berlin: Spektrum Akademischer Verlag.] BegoN, M., Mortimer, M., ThompsoN, D.J. (1996): Population Ecology: A Unified Study of Animals and Plants. 3rd ed. Oxford, London, Edinburgh: Blackwell Science. [Deutsche Übersetzung (1997): Populationsöko- logie. Heidelberg, New York: Spektrum Akademischer Verlag.] BelgraNo, A., SCharler, U.M., DuNNe, J., UlaNowiCz, R.E. (eds.) (2005): Aquatic Food Webs – An Ecosystem Approach. Oxford: Oxford University Press. Blume, H.-P., Brümmer, G.W., horN, R., kaNdeler, E., kögel-kNaBNer, I., kretzsChmar, R., stahr, K., wilke, B.-M. (2010): Scheffer/Schachtschabel – Lehrbuch der Bodenkunde. 16. Aufl. Heidelberg: Spektrum Aka- demischer Verlag. BrowN, J.H., west, G.B. (eds.) (2000): Scaling in biology. Oxford, London: Oxford University Press. CaiN, M.L., BowmaN, W.D., HaCker, S.D. (2008): Ecology. Sunderland: Sinauer. Calow, P. (ed.) (1998): The Encyclopedia of Ecology and Environmental Management. Oxford, London, Edin- burgh: Blackwell Science. Calver, M., LymBery, A., MCComB, J., Bamford, M. (eds.) (2009): Environmental Biology. Cambridge: Cambridge University Press. CarsoN, W., SChNitzer, S. (eds.) (2008): Tropical Forest Community Ecology. Oxford: Wiley-Blackwell. Crawley, M.J. (ed.) (1997): Plant Ecology. 2nd. ed. Oxford, London, Edinburgh: Blackwell Science. Davis, M. A. (2009): Invasion Biology. Oxford: Oxford University Press. DiersChke, H. (1994): Pflanzensoziologie – Grundlagen und Methoden. Stuttgart: Eugen Ulmer. ElleNBerg, H., LeusChNer, C. (2010): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 6. Auflage. Stuttgart: Eugen Ulmer. EltoN, C.S. (1927): Animal Ecology. London: Sidgwick & Jackson. EltoN, C. (1966): The Pattern of Animal Communities. London: Chapman and Hall. GastoN, K. (ed.) (2010): Urban Ecology. Cambridge: Cambridge University Press. GastoN, K.J., BlaCkBurN, T. (2000): Pattern and Process in Macroecology. Oxford, London, Edinburgh: Black- well Science. Hartl, D.L., Clark, A.G. (2007): A Primer of Population Genetics. 4th ed. Sunderland: Sinauer. Hildrew, A., Raffaelli, D., EdmoNds-BrowN, R. (eds.) (2007): Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge: Cambridge University Press. IUSS workiNg group WRB (2006): World Reference Base for Soil Resources 2006. 2nd ed. World Soil Re- sources Reports No. 103. Rom: FAO. JørgeNseN, S.E. (ed.) (2009): Ecosystem Ecology. Amsterdam: Elsevier. JørgeNseN, S.E., fath, B. (eds.) (2008): Encyclopedia of Ecology. Vol. 1 to 5. Oxford: Elsevier. Kappeler, P. (2005): Verhaltensbiologie. 2. Aufl. Berlin, Heidelberg: Springer. KiNgslaNd, S.E. (1985): Modeling Nature. Episodes in the History of Population Ecology. University of Chicago Press, Chicago, London. KratoChwil, A., SChwaBe, A. (2000): Ökologie der Lebensgemeinschaften – Biozönologie. Stuttgart: Eugen Ul- mer. M. Schaefer, Wörterbuch der Ökologie, DOI 10.1007/978-3-8274-2562-1, @ Spektrum Akademischer Vertag Heidelberg 2012 Literatur 328 KreBs, C. J. (1999): Ecological Methodology. 2nd ed. Menlo Park: Addison-Wesley Educational. KreBs, C. J. (2009): Ecology: The Experimental Analysis of Distribution and Abundance. 6th ed. San Francisco: Benjamin Cummings. Kump, L.R., KastiNg, J.F., CraNe, R.G. (2009): The Earth System. 3rd ed. New Jersey: Pearson Education. Lampert, W., Sommer, U. (1999): Limnoökologie. 2. Aufl. Stuttgart, New York: Thieme. [Englische Übersetzung (1997): Limnoecology. Oxford, London, Edinburgh: Oxford University Press.] LarCher, W. (2001): Ökophysiologie der Pflanzen. 6. Aufl. Stuttgart: Eugen Ulmer. [Englische Übesetzung (2002): Physiological Plant Ecology – Ecophysiology and Stress Physiology of Functional Groups. 4th ed. Berlin, Heidelberg, New York: Springer.] LawreNCe, E. (ed.) (2008): Henderson’s Dictionary of Biology. 14th ed. Harlow, London: Pearson, Benjamin Cummings. LawtoN, J.H. (2000): Community Ecology in a Changing World. Excellence in Ecology Series Book 11. Olden- dorf/Luhe: Inter-Research Science Publisher and Ecology Institute. LeviN, S.A. (ed.) (2009): The Princeton Guide to Ecology. Princeton: Princeton University Press. LeviNtoN, J.S. (2009): Marine Biology: Function, Biodiversity, Ecology. 3rd ed. New York, Oxford: Oxford Uni- versity Press. Leyer, I., wesChe, K. (2007): Multivariate Statistik in der Ökologie. Eine Einführung. Berlin, Heidelberg: Springer. LiNColN, R.J., Boxshall, G.A., Clark, P.F. (1998): A Dictionary of Ecology, Evolution and Systematics. 2nd ed. Cambridge: Cambridge University Press. Loreau, M. (2010): From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis. Princeton: Princeton University Press. Losos, J.B., RiCklefs, R.E. (eds.) (2009): The Theory of Island Biogeography Revisited. Princeton: Princeton University Press. MagurraN, A.E., MCgill, B.J. (eds.) (2011): Biological Diversity. Frontiers in Measurement and Assessment. Oxford: Oxford University Press. MartiN, K. (2002): Ökologie der Biozönosen. Berlin, Heidelberg, New York: Springer. MCiNtosh, R.P. (1985): The Background of Ecology. Cambridge: Cambridge University Press. MoriN, P.J. (1999): Community Ecology. Oxford: Blackwell Science. MorroNe, J.J. (2009): Evolutionary Biogeography. New York: Columbia University Press. MuNk, K. (Hrsg.) (2009): Evolution – Ökologie. Stuttgart: Thieme. Naeem, S., BuNker, D.E., HeCtor, A., Loreau, M., PerriNgs, C. (eds.) (2009): Biodiversity, Ecosystem Functio- ning, and Human Wellbeing. Oxford: Oxford University Press. NeNtwig, W. (2005): Humanökologie: Fakten – Argumente – Ausblicke. 2. Aufl. Berlin, Heidelberg: Springer. NeNtwig, W., BaCher, S., BeierkuhNleiN, C., BraNdl, R., GraBherr, G. (2004): Ökologie. Heidelberg, Berlin: Spektrum Akademischer Verlag. NeNtwig, W., BaCher, S., BraNdl, R. (2011): Ökologie kompakt. Heidelberg: Spektrum Akademischer Verlag. Niemelä, J., Breuste, J.H., GuNteNspergeN, G., MCiNtyre, N.E., Elmqvist, T., James, P. (eds.) (2011): Urban Eco- logy. Patterns, Processes, and Applications. Oxford: Oxford University Press. NiereNBerg, W.A. (1995): Encyclopedia of Environmental Biology. Vol. 1–3. San Diego, New York, Boston: Academic Press. Odum, E.P. (1971): Fundamentals of Ecology. Philadelphia, London, Toronto: Saunders. PerfeCto, I., VaNdermeer, J., Wright, A. (2009): Nature’s Matrix. Linking Agriculture, Conservation and Food Sovereignty. London: Earthscan. PrimaCk, R.B. (2006): Essentials of Conservation Biology. 4th ed. Sunderland: Sinauer. PulliN, A.S. (2002): Conservation Biology. Cambridge, New York: Cambridge University Press. ReiNeke, W., SChlömaNN, M. (2007): Umweltmikrobiologie. Heidelberg: Spektrum Akademischer Verlag. Remmert H. (1992): Ökologie. 5. Auflage, Berlin, Heidelberg, New York: Springer. RiChardsoN, D.M. (ed.) (2010): Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Hoboken: Wiley- Blackwell. RiCklefs, R.E. (2010): The Economy of Nature. 6th ed. New York: Freeman. RiCklefs, R.E., miller, G.L. (1999): Ecology. 4th ed. Basingstoke: Palgrave Macmillan. Ridley, M. (2003): Evolution. 3rd ed. Oxford: Wiley-Blackwell. SChlesiNger, W.H. (1997): Biogeochemistry – An Analysis of Global Change. 2nd ed. San Diego: Academic Press. SChooNhoveN, L.M., van LooN, J.J.A., DiCke, M. (2005): Insect-Plant Biology. 2nd ed. Oxford: Oxford University press. SChowalter, T.D. (2000): Insect Ecology – An Ecosystem Approach. San Diego, New York: Academic Press. SChulze, E.D., BeCk, E., müller-hoheNsteiN, K. (2005): Plant Ecology. Berlin, Heidelberg: Springer. SChultz, J. (2002): Die Ökozonen der Erde. 3. Aufl. Stuttgart: Ulmer. 329 Literatur SChwoerBel J, BreNdelBerger H (2005): Einführung in die Limnologie. 9. Aufl. Heidelberg: Spektrum Akademi- scher Verlag. Sherratt, T.N., WilkiNsoN, D.M. (2009): Big Questions in Ecology and Evolution. Oxford: Oxford University Press. Sommer, U. (2005): Biologische Meereskunde. 2. Aufl.
Recommended publications
  • Relative Importance of Propagule Size and Propagule Number for Establishment of Non-Indigenous Species: a Stochastic Simulation Study
    Aquatic Invasions (2016) Volume 11, Issue 1: 101–110 DOI: http://dx.doi.org/10.3391/ai.2016.11.1.11 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Relative importance of propagule size and propagule number for establishment of non-indigenous species: a stochastic simulation study 1,2 3 David Drolet * and Andrea Locke 1Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3 Canada 2Current address: Fisheries and Oceans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, Québec, G5H 3Z4 Canada 3Department of Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick, E1C 9B6 Canada E-mail: [email protected] (DD), [email protected] (AL) *Corresponding author Received: 11 February 2015 / Accepted: 23 September 2015 / Published online: 8 December 2015 Handling editor: Charles W. Martin Abstract Propagule pressure is emerging as the most consistent predictor of establishment in non-indigenous species. Increasing propagule size (the number of individuals arriving in a novel environment at one time) is thought to increase probability of establishment by counteracting demographic stochasticity and Allee effects. Increasing propagule number (the number of introduction events) is thought to increase probability of establishment by counteracting environmental stochasticity. However, the relative importance of these effects and the conditions under which one effect may become predominant is largely unexplored. We first used stochastic population simulations, with a constant number of immigrants distributed over varying numbers of introduction events, to determine the relative importance of propagule size and number on the probability of establishment.
    [Show full text]
  • The Landscape Epidemiology of Malaria Within Two
    ECOLOGICAL DYNAMICS OF VECTOR-BORNE DISEASES IN CHANGING ENVIRONMENTS by Luis Fernando Chaves A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2008 Doctoral Committee: Professor Mark L. Wilson, Co-Chair Associate Professor Mercedes Pascual, Co-Chair Professor John H. Vandermeer Assistant Professor Edward L. Ionides “Se puderes olhar, vê. Se podes ver, repara” Jose Saramago © Luis Fernando Chaves All rights reserved 2008 To my grandfather (Don Fernando), with love for his support and advice ii ACKNOWLEGEMENTS I am indebted to many people, primarily to my committee, they helped me in directing and defining my research agenda for this dissertation. First I’d like to thank my two chairs, Dr. Mercedes Pascual and Dr. Mark Wilson. They are very different in almost everything you can imagine, with the exception of being excellent scientists. With one I’m very grateful for the financial support, technical advice and input on scientific questions. With the other I’m grateful for the inspiration to build a comprehensive and dialectic epistemological framework for my career, and for the constant support through several steps in this segment of my journey in Academia. Dr. Ed Ionides was very helpful through his classes and time to instruct me with tools that are fundamental to the analysis of the problems presented here, as well as with the insights and perspectives of somebody with a completely different training. Dr. John Vandermeer is definitively one of my most admired colleagues, he showed me that being a successful ecologist can only be enhanced by being actively involved in the context of our objects/subjects of study.
    [Show full text]
  • ORGANIC GEOCHEMISTRY: CHALLENGES for the 21St CENTURY
    ORGANIC GEOCHEMISTRY: CHALLENGES FOR THE 21st CENTURY VOL. 2 Book of Abstracts of the Communications presented to the 22nd International Meeting on Organic Geochemistry Seville – Spain. September 12 -16, 2005 Editors: F.J. González-Vila, J.A. González-Pérez and G. Almendros Equipo de trabajo: Rocío González Vázquez Antonio Terán Rodíguez José Mª de la Rosa Arranz Maquetación: Rocío González Vázquez Fotomecánica e impresión: Akron Gráfica, Sevilla © 22nd IMOG, Sevilla 2005 Depósito legal: SE-61181-2005 I.S.B.N.: 84-689-3661-8 COMMITTEES INVOLVED IN THE ORGANIZATION OF THE 22 IMOG 2005 Chairman: Francisco J. GONZÁLEZ-VILA Vice-Chairman: José A. GONZÁLEZ-PÉREZ Consejo Superior de Investigaciones Científicas (CSIC) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) Scientific Committee Francisco J. GONZÁLEZ-VILA (Chairman) IRNAS-CSIC, Spain Gonzalo ALMENDROS Claude LARGEAU CCMA-CSIC, Spain ENSC, France Pim van BERGEN José C. del RÍO SHELL Global Solutions, The Netherlands IRNAS-CSIC, Spain Jørgen A. BOJESEN-KOEFOED Jürgen RULLKÖTTER GEUS, Denmark ICBM, Germany Chris CORNFORD Stefan SCHOUTEN IGI, UK NIOZ, The Netherlands Gary ISAKSEN Eugenio VAZ dos SANTOS NETO EXXONMOBIL, USA PETROBRAS RD, Brazil Local Committee José Ramón de ANDRÉS IGME, Spain Mª Carmen DORRONSORO Mª Enriqueta ARIAS Universidad del País Vasco Universidad de Alcalá Antonio GUERRERO Tomasz BOSKI Universidad de Sevilla Universidad do Algarve, Faro, Portugal Juan LLAMAS Ignacio BRISSON ETSI Minas de Madrid Repsol YPF Albert PERMANYER Juan COTA Universidad de Barcelona Universidad de Sevilla EAOG Board Richard L. PATIENCE (Chairman) Sylvie DERENNE (Secretary) Ger W. van GRAAS (Treasurer) Walter MICHAELIS (Awards) Francisco J. GONZALEZ-VILA (Newsletter) C.
    [Show full text]
  • Predators As Agents of Selection and Diversification
    diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8].
    [Show full text]
  • Is Human Hibernation Possible?
    ANRV334-ME59-12 ARI 16 December 2007 14:50 Is Human Hibernation Possible? Cheng Chi Lee Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030; email: [email protected] Annu. Rev. Med. 2008. 59:177–86 Key Words The Annual Review of Medicine is online at hypothermia, 5-AMP, torpor, hypometabolism http://med.annualreviews.org This article’s doi: Abstract 10.1146/annurev.med.59.061506.110403 The induction of hypometabolism in cells and organs to reduce is- Copyright c 2008 by Annual Reviews. chemia damage holds enormous clinical promise in diverse fields, in- All rights reserved cluding treatment of stroke and heart attack. However, the thought 0066-4219/08/0218-0177$20.00 that humans can undergo a severe hypometabolic state analogous to hibernation borders on science fiction. Some mammals can enter a severe hypothermic state during hibernation in which metabolic activity is extremely low, and yet full viability is restored when the animal arouses from such a state. To date, the underlying mecha- nism for hibernation or similar behaviors remains an enigma. The beneficial effect of hypothermia, which reduces cellular metabolic demands, has many well-established clinical applications. However, severe hypothermia induced by clinical drugs is extremely difficult and is associated with dramatically increased rates of cardiac arrest for nonhibernators. The recent discovery of a biomolecule, 5-AMP, which allows nonhibernating mammals to rapidly and safely enter severe hypothermia could remove this impediment and enable the wide adoption of hypothermia as a routine clinical tool. 177 ANRV334-ME59-12 ARI 16 December 2007 14:50 INTRODUCTION ing mammals.
    [Show full text]
  • Effects of Human Disturbance on Terrestrial Apex Predators
    diversity Review Effects of Human Disturbance on Terrestrial Apex Predators Andrés Ordiz 1,2,* , Malin Aronsson 1,3, Jens Persson 1 , Ole-Gunnar Støen 4, Jon E. Swenson 2 and Jonas Kindberg 4,5 1 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden; [email protected] (M.A.); [email protected] (J.P.) 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway; [email protected] 3 Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden 4 Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway; [email protected] (O.-G.S.); [email protected] (J.K.) 5 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden * Correspondence: [email protected] Abstract: The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions.
    [Show full text]
  • Gene Flow in the Environment – Genetic Pollution? G.R
    Gene flow in the environment Gene flow in the environment – genetic pollution? G.R. Squire, N. Augustin, J. Bown1, J.W. Crawford, G. Dunlop, J. Graham, J.R. Hillman, B. Marshall, D. Marshall, G. Ramsay, D.J. Robinson, J. Russell, C. Thompson & G. Wright iological invasions have had profound effects on affect plants and animals, injure us? Will crops in gen- Bhuman society from the earliest times. The spread eral, and GM ones in particular, reduce even more the of the black death in the Middle Ages, the devasta- biological diversity of arable farmland? Will they con- tions of potato blight, the effects on indigenous taminate other crops, cause more pesticide to be used, species by grey squirrels, dutch elm disease and flat- rather than less as some companies claim? worms have all been seen as detrimental to man or the environment. Others are seen as bringing benefits: An increasing number of people have a stake in the most of our crops evolved elsewhere in the world and debate - pressure groups, farmers, farm advisers, con- many culinary and medicinal herbs were brought to sumers, agrochemical companies and government. Britain by the Romans. Perhaps the greatest invasion Opinions are too often polarised. In this confronta- is the import of vast numbers of exotic plants to gar- tional atmosphere, the need is for clear, independent dens and greenhouses. Ecological invasions are an fact, answers and comment. A part of the debate is intrinsic part of ecology and evolution and we only ethical, but independent research is essential on ques- consider them bad if they impoverish our health, tions that science can legitimately address.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • The Role of Genetic Resources for Food and Agriculture in Climate Change Adaptation and Mitigation
    March 2021 CGRFA/WG-AqGR-3/21/Inf.15 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE Item 8 of the Provisional Agenda INTERGOVERNMENTAL TECHNICAL WORKING GROUP ON AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE Third Session 1 - 3 June 2021 THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN CLIMATE CHANGE ADAPTATION AND MITIGATION TABLE OF CONTENTS Paragraphs I. INTRODUCTION ................................................................................................... 1 – 2 II. SCOPING STUDY ON THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN ADAPTATION TO AND MITIGATION OF CLIMATE CHANGE ....................................................................................................................... 3 Appendix: Scoping study on the role of genetic resources for food and agriculture in adaptation to and mitigation of climate change NF847 2 CGRFA/WG-AqGR-3/21/Inf.15 I. INTRODUCTION 1. The Commission on Genetic Resources for Food and Agriculture (Commission), at its last session, requested FAO to prepare a scoping study on the role of genetic resources for food and agriculture (GRFA) in adaptation to and mitigation of climate change, including knowledge gaps, taking into account the forthcoming special reports on terrestrial and marine systems by the Intergovernmental Panel on Climate Change (IPCC) and other available relevant sources, including examples from different regions and subsectors.1 2. The Commission further requested its Intergovernmental Technical Working Groups to review the study. II. SCOPING STUDY ON THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN ADAPTATION TO AND MITIGATION OF CLIMATE CHANGE 3. The draft text of the scoping study on the role of genetic resources for food and agriculture in adaptation to and mitigation of climate change is presented in Appendix to this document.
    [Show full text]
  • Journal Vol 18 No 1 & 2, September 2002
    Journal of the British Dragonfly Society Volume 18 Number I & 2 September 2002 Editor Dr Jonathan Pickup TheJournal ofthe Bn/ish DragonflySociely, published twice a year, contains articleson Odonata that have been recorded from the United Kingdom and articles on EuropeanOdonata written by members of the Society. The aims of the British Dragonfly Society(B.D.S.) are to promote and encourage the study and conservation ofOdonata and their natural habitats, especially in the United Kingdom. Trustees of the British Dragonfly Society Articles for publicanon (twopaper copes er ('.Ir copy plus disk please) should be sent rothe Chairman: T G. Beynon Editor. Instructions for authors appor inside Vice�Chairma,,: PM. AUen back cover. SecrellJry: W. H. Wain '1rriJJuru: A. G. T Carter Back numbers of the Journal can be purchased Edilnr, J. Pickup from the Librarian/Archivist at ConV<nOrof Dragonfly ConstnJal"'" Group, 1-4 copies £2.75 percopy, P Taylor 5 copies or over £2.60 per copy (members) or £5.50 (non-mcmbe.. ). Ordinary Trustees: M. T Avcrill Ordinary membership annual subscription D.J. Pryce D. Gennard £10.00. D. J. Mann Overseas subscription £12.50. All subscriptions are due on 1st April each year. Late payers will be charged £1 extra. ADDRESSES Life membership subscription £1000. Edilor: Jonathan Pickup, Other subscription rates (library, corporate) on 129 Craigleith Road, application to the Secretary, who will also deal Edinburgh EH4 2EH with membership enquiries. e�mail: [email protected] SW'eUJry: W. H. Wain, The Haywain, Hollywater Road, Bordon, Hants GU35 OAD Ubrarian/Arr:III'VtSl: D.
    [Show full text]
  • Mikaël BILI Préparée À L’UMR 1349 « IGEPP » Institut De Génétique, Environnement Et Protection Des Plantes UFR Sciences De La Vie Et De L’Environnement
    ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie Ecole doctorale Vie – Agro – Santé présentée par Mikaël BILI Préparée à l’UMR 1349 « IGEPP » Institut de Génétique, Environnement et Protection des Plantes UFR Sciences de la Vie et de l’Environnement Eléments de Thèse soutenue à Rennes le18 décembre 2014 différenciation de la devant le jury composé de : Didier BOUCHON niche écologique chez Professeur, Université de Poitiers/rapporteur deux coléoptères Emmanuel DESOUHANT Professeur,Université de Lyon 1 / rapporteur parasitoïdes en Geneviève PREVOST Professeur,Université Picardie Jules Verne / compétition : examinateur Cécile LE LANN Maître de Conférences,Université de Rennes 1/ comportement et examinateur communautés Denis POINSOT Maître de Conférences,Université de Rennes 1/ directeur de thèse bactériennes. Anne Marie CORTESERO Professeur, Université de Rennes 1 / co-directrice de thèse Remerciements Après trois années en thèse, comme tout doctorant, il y a un grand nombre de personnes que j'aimerais remercier tant au sein de l'UMR IGEPP que parmi les gens qui m'épaulent (i. e. "me supportent") depuis plus longtemps. Mais tout d’abord je tiens à remercier sincèrement Didier Bouchon, Emmanuel Desouhant, Geneviève Prevost et Cécile Le Lann pour avoir accepté sans hésiter de prendre le temps et de se déplacer à Rennes (avec plus ou moins de difficultés) afin de juger ce travail. Votre intérêt et vos questions m’ont permis de savourer pleinement la défense de cette thèse. Je n'oublierai pas mes encadrants, Denis Poinsot et Anne Marie Cortesero.
    [Show full text]
  • Single Gene Locus Changes Perturb Complex Microbial Communities As Much As Apex Predator Loss
    ARTICLE Received 5 Dec 2014 | Accepted 30 Jul 2015 | Published 10 Sep 2015 DOI: 10.1038/ncomms9235 OPEN Single gene locus changes perturb complex microbial communities as much as apex predator loss Deirdre McClean1,2, Luke McNally3,4, Letal I. Salzberg5, Kevin M. Devine5, Sam P. Brown6 & Ian Donohue1,2 Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multi- trophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic varia- bility can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change. 1 Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin D2, Ireland. 2 Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin D2, Ireland. 3 Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK. 4 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK. 5 Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin D2, Ireland.
    [Show full text]