EFECTO DE Trichoderma Harzianum EN EL CONTROL DE MILDIU (Pseudoperonospora Cubensis) EN PEPINO

Total Page:16

File Type:pdf, Size:1020Kb

EFECTO DE Trichoderma Harzianum EN EL CONTROL DE MILDIU (Pseudoperonospora Cubensis) EN PEPINO Agronomía Costarricense 43(1): 101-111. ISSN:0377-9424 / 2019 www.mag.go.cr/rev agr/index.html www.cia.ucr.ac.cr Nota técnica EFECTO DE Trichoderma harzianum EN EL CONTROL DE MILDIU (Pseudoperonospora cubensis) EN PEPINO Allan Alvarado-Aguayo1/*, Wilmer Pilaloa-David*, Sinthya Torres-Sánchez**, Kevin Torres-Sánchez*** Palabras clave: Antagonismo; control biológico; enfermedades fungosas; hifa; micelio; mildiu. Keywords: Antagonistic; biological control; fungal diseases; hypha; mycelium; mildew. Recibido: 22/03/18 Aceptado: 08/06/18 RESUMEN ABSTRACT La investigación consistió en medir el Trichoderma harzianum effect on efecto de Trichoderma harzianum en el control mildew control (Pseudoperonospora cubensis) del mildiu (Pseudoperonospora cubensis) del in cucumber crops. This research measured pepino (Cucumis sativus L.). Se utilizó un diseño the effect of Trichoderma harzianum on mildew de bloques completos al azar (DBCA) con 5 tra- control (Pseudoperonospora cubensis) in tamientos y 4 repeticiones en el sector Vainillo cucumber crops (Cucumis sativus L.). A random del cantón El Triunfo, provincia del Guayas, complete block design (RCBD) relied on 5 Ecuador. Las variables analizadas fueron: el treatments and 4 repetitions was carried out in porcentaje de infección de mildiu, eficacia de los Vainillo of El Triunfo city, Guayas province, tratamientos, longitud del fruto (cm), diámetro de Ecuador. The variables analyzed were: infection fruto (cm), frutos por planta, rendimiento (kg por of mildew percentage, treatment efficiency, fruit planta) y análisis económico. Realizado el ensayo length (cm), fruit diameter (cm), fruit per plant se pudo constatar la presencia de la enfermedad ratio, yield (kg per plant) and economic analysis. del mildiu, obteniendo el mayor porcentaje de Once the test was carried out, the presence eficacia (84,4%) en el control con el tratamiento of mildew disease was verified, obtaining the de Benomyl 50 WP,- 400 g.ha-1 y el tratamiento highest percentage of efficacy (84.4%) in the de Tricho D.- 500 g.ha-1 con una eficacia de control of treatments with Benomyl 50 WP, - 400 84,24%. Mediante la relación beneficio-costo g.ha-1 and treatment with Tricho D - 500 g.ha-1 (RBC) obtuvieron los mejores resultados el trata- with 84.24% of efficacy. The best benefit cost miento de Benomyl 50 WP,- 400 g.ha-1 con una ratio was the treatment with Benomyl 50 WP, - RBC de 1,53 y el tratamiento de Tricho D.- 500 400 g.ha-1 with 1.53 and treatment Tricho D.- 500 g.ha-1 con una RBC 1,50. Se recomienda aplicar g.ha-1 with 1.50. It is recommended for the control T. harzianum en dosis de 500 g.ha-1para el con- of mildew in cucumber crops should apply T. trol del mildiu en el cultivo de pepino. harzianum in doses of 500 g.ha-1. 1 Autor para correspondencia. Correo electrónico: ** Universidad Agraria del Ecuador. Ciudad [email protected] Universitaria Milagro. Guayas, Ecuador. * Universidad Agraria del Ecuador. Programa *** Instituto Agro Ganadero La Troncal. Cañar, Ecuador. Regional de Enseñanza El Triunfo. Guayas, Ecuador. 102 AGRONOMÍA COSTARRICENSE INTRODUCCIÓN a fructificaciones del patógeno, esporangios y esporangioforos (Zitter y McGrath 2005). El pepino (Cucumis sativus L., familia El manejo de P. cubensis consiste en utili- Cucurbitaceae) es una planta herbácea anual zar variedades resistentes, permitir la circulación rastrera nativa de Asia y África, utilizada para la de aire entre plantas, aplicar fertilización adecuada alimentación humana desde hace unos 3000 años y controlar poblaciones de arvenses (Schultz y (Zopplo et al. 2008). En Ecuador los principales French-Monar 2011). Una estrategia para reducir mercados de destino para el pepino son Colom- pérdidas de producción es la aplicación de fungi- bia, Estados Unidos, Japón, Holanda, Puerto cidas protectantes como clorotalonil, oxicloruro Rico, Reino Unido, Bahamas y Bélgica (Tenemaza de cobre, zineb, mancozeb después de sembrar el y Sabando 2015). cultivo, y fungicidas curativos y antiesporulantes El cultivo es afectado por diversas enferme- (tebuconazole, iprovalicarb) al observar los prime- dades fungosas, las cuales se presentan cuando las ros síntomas de la enfermedad (Roa 2015). condiciones ambientales son propicias para su desa- En la actualidad se han utilizado diver- rrollo, sobre todo en cambios del estado vegetativo sos extractos vegetales para controles fitosanitarios a floración. Los hongos más comunes son Pythium, como alternativa a los agroquímicos. Por ejemplo Phytophthora, Rhizoctonia, Oidium, Colletotrichum, las saponinas, glucósidos oleosos, han sido evaluadas Fusarium y Pseudoperonospora (Arias 2007). para combate del mildiu en cucurbitáceas con bue- Para el manejo de las enfermedades fun- nos resultados en el control. Otros agentes biológicos gosas se debe planificar un programa que integre han sido ampliamente investigados, por ejemplo el todas las posibilidades de control orientadas a hongo micoparasítico Ampelomyces quisqualis y inhibir el desarrollo de los patógenos y dar un uso racional a los productos fitosanitarios. Ello por su capacidad para tolerar algunos fungicidas minimiza el impacto ambiental y económico, químicos, se han realizado aplicaciones combinadas además, de obtener productos inocuos en la cose- con buenos resultados (González et al. 2010). cha (FAO 2011). Los fungicidas, tanto sistémicos como El mildiu (Pseudoperonospora cubensis) protectores, presentan mayores posibilidades de es una de las enfermedades foliares más impor- crear resistencias por parte de los hongos, debido tantes del pepino en Ecuador, pues su desarrollo a sus mecanismos de acción muy específicos, es favorecido por las condiciones propicias de además, de dificultar la comercialización de la humedad que se mantienen durante periodos producción, ya que hay un tiempo de carencia que prolongados (Basantes 2015). Pertenece a la debe cumplirse entre la última aplicación y venta clase Oomycetes, orden Peronosporales, familia para consumo (Yañez et al. 2012). Peronosporaceae, que se caracteriza por su faci- Trichoderma (clase Sordariomycetes, lidad para sobrevivir en plantas silvestres de la orden Hypocreales, familia Hypocreaceae) es un familia cucurbitácea (Ruiz et al. 2008). El rocío hongo de gran importancia, a nivel agrícola, como de la noche favorece el desarrollo del mildiu y agente de control biológico frente a fitopatógenos durante el día cuando aumenta la temperatura, de importancia económica (Tovar 2008). Posee seca las hojas y favorece que las esporas sean cualidades antagónicas contra hongos del suelo, transportadas por el viento, los trabajadores y las principalmente de los géneros Phytophthora, Rhi- herramientas (Alonzo 2015). zoctonia, Sclerotium, Oidium y Fusarium, entre Los primeros síntomas inician en el haz otros. Trichoderma actúa como hiperparásito com- de las hojas en forma de manchas amarillentas petitivo que produce metabolitos anti fúngicos con formas irregulares. En condiciones de alta (Ezziyyani et al. 2004). Sus principales mecanis- humedad y en correspondencia con las manchas mos la antibiosis, micoparasitismo, competencia del haz, aparecen estructuras de color grisáceo- por nutrientes y espacio (Guigón y Muñoz 2013), oscuro en el envés, las cuales corresponden contiene metabolitos que inducen mecanismos de Agronomía Costarricense 43(1): 101-111. ISSN:0377-9424 / 2019 ALVARADO-AGUAYO et al.: Control de mildiu en pepino 103 resistencia en las plantas (Tovar 2008), y produce MATERIALES Y MÉTODOS toxinas y antibióticos (Romero et al. 2009). En Ecuador se ha estudiado Trichoderma harzianum El presente estudio se realizó en el sobre hongos en pepino, en condiciones de labo- sector El Vainillo (cantón El Triunfo, Guayas, ratorio e invernadero, en los que se observaron Ecuador), en las coordenadas UTM: Norte efectos positivos sobre la severidad de microorga- 9742000 / 9760400 y Este: 666800 / 694630 nismos patógenos (Vivas y Molina 2011). (IGM 2010). Se evaluaron 5 tratamientos y Hoy día es prioritaria una agricultura lim- 4 repeticiones, que resultan de 3 distintas pia, sin contaminantes y generadora de productos dosis de Trichoderma (producto comercial inocuos que contribuyan a la seguridad alimenta- Tricho-D) más 2 testigos, uno comercial y otro ria. El uso de Trichoderma como antagonista de absoluto, sobre el cultivo de pepino, variedad hongos es una alternativa al uso de fungicidas, Diamante F1. Se aplicaron 3 dosis de Tricho-D por lo que es preciso establecer las dosis de mayor y al testigo comercial Benomilo (Benomyl 50 eficacia en el control de mildiu para cucurbi- WP), a los 8 días después de la siembra, una táceas. El presente trabajo tiene como objetivo segunda aplicación a los 30 días y la tercera identificar el efecto favorable, desfavorable o nulo aplicación los 50 días (Cuadro 1) en un Diseño de la utilización de 3 dosis de Trichoderma para de Bloques Completos al Azar (DBCA) con 20 control de mildiu, y verificar las potencialidades parcelas experimentales en un área de 720 m2, de este hongo con medición de variables que con un distanciamiento de siembra de 0,8 m cuantifiquen el rendimiento del cultivo de pepino. entre hileras y 0,5 m entre plantas. Cuadro 1. Dosificaciones de los tratamientos para el control de mildiu en pepino. Tratamiento Descripción Dosis.ha-1 Días a la aplicación* 1 Tricho D (Trichoderma harzianum) 300 g.ha-1 8, 30 y 50 dds 2 Tricho D (Trichoderma harzianum) 400 g.ha-1 8, 30 y 50 dds 3 Tricho D (Trichoderma harzianum) 500 g.ha-1 8, 30 y 50 dds 4 Benomyl 50 WP, fungicida sistémico 0,4 kg.ha-1 8, 30 y 50 dds 5 Testigo absoluto sin aplicación -- No se aplica *dds=días después de la siembra. La valoración estadística de los datos se rea- Cuadro 2. Análisis de varianza. lizó mediante el análisis de varianza, al comparar las medias de tratamientos con la prueba de Tukey Fuente de variación GL al 5% de probabilidad (Montgomery 2000). El esquema de análisis de la varianza se explica en el Repeticiones 3 Cuadro 2, en donde se realizaron 4 tratamientos con Tratamientos 4 3 repeticiones cada uno, obteniéndose la cantidad de 12 parcelas de control donde fueron comparadas con EE 12 el testigo las medias en las diversas situaciones con el Total 19 fin de determinar el error experimental.
Recommended publications
  • Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
    Mycology Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli Melanie N. Mitchell, Cynthia M. Ocamb, Niklaus J. Grünwald, Leah E. Mancino, and David H. Gent First, second, and fourth authors: Department of Botany and Plant Pathology, third author: United States Department of Agriculture– Agricultural Research Service (USDA-ARS), Horticultural Crops Research Unit; and fifth author: USDA-ARS, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis. Accepted for publication 6 March 2011. ABSTRACT Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and in nuclear, mitochondrial, and ITS phylogenetic analyses, with the Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperono- exception of isolates of P. humuli from Humulus japonicus from Korea. spora cubensis and P. h u m u l i . Phytopathology 101:805-818. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. h um u li descended from P. cubensis. Host-specificity The most economically important plant pathogens in the genus experiments were conducted with two reportedly universally susceptible Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. cubensis and P. hu m u li, causal agents of downy mildew on cucurbits and P. cubensis consistently infected the hop cultivars at very low rates, and hop, respectively. Recently, P. humuli was reduced to a taxonomic sporangiophores invariably emerged from necrotic or chlorotic hyper- synonym of P. cubensis based on internal transcribed spacer (ITS) sensitive-like lesions. Only a single sporangiophore of P.
    [Show full text]
  • Phytophthora Pathogens Threaten Rare Habitats and Conservation Plantings
    Phytophthora pathogens threaten rare habitats and conservation plantings Susan J. Frankel1, Janice Alexander2, Diana Benner3, Janell Hillman4 & Alisa Shor5 Abstract Phytophthora pathogens are damaging native wildland vegetation including plants in restoration areas and botanic gardens. The infestations threaten some plants already designated as endangered and degrade high-value habitats. Pathogens are being introduced primarily via container plant nursery stock and, once established, they can spread to adjacent areas where plant species not previously exposed to pathogens may become infected. We review epidemics in California – caused by the sudden oak death pathogen Phytophthora ramorum Werres, De Cock & Man in ‘t Veld and the frst USA detections of P. tentaculata Krber & Marwitz, which occurred in native plant nurseries and restoration areas – as examples to illustrate these threats to conservation plantings. Introduction stock) (Liebhold et al., 2012; Parke et al., Phytophthora (order: Peronosporales; 2014; Jung et al., 2015; Swiecki et al., kingdom: Stramenopila) pathogens 2018b; Sims et al., 2019). Once established, have increasingly been identifed as Phytophthora spp. have the potential associated with plant dieback and to reduce growth, kill and cause other mortality in restoration areas (Bourret, undesirable impacts on a wide variety of 2018; Garbelotto et al., 2018; Sims et al., native or horticultural vegetation (Brasier 2019), threatened and endangered species et al., 2004; Hansen 2007, 2011; Scott & habitat (Swiecki et al., 2018a), botanic Williams, 2014; Jung et al., 2018). gardens and wildlands in coastal California In this review, we focus on the (Cobb et al., 2017; Metz et al., 2017) and consequences of two pathogen southern Oregon (Goheen et al., 2017).
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • Dimorphism of Sporangia in Albuginaceae (Chromista, Peronosporomycetes)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2006 Band/Volume: 58 Autor(en)/Author(s): Constantinescu Ovidiu, Thines Marco Artikel/Article: Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes). 178-190 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes) O. Constantinescu1 & M. Thines2 1 Botany Section, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden 2 Institute of Botany, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany Constantinescu O. & Thines M. (2006) Dimorphism of sporangia in Albugi- naceae (Chromista, Peronosporomycetes). - Sydowia 58 (2): 178 - 190. By using light- and scanning electron microscopy, the dimorphism of sporangia in Albuginaceae is demonstrated in 220 specimens of Albugo, Pustula and Wilsoniana, parasitic on plants belonging to 13 families. The presence of two kinds of sporangia is due to the sporangiogenesis and considered to be present in all representatives of the Albuginaceae. Primary and secondary sporangia are the term recommended to be used for these dissemination organs. Key words: Albugo, morphology, sporangiogenesis, Pustula, Wilsoniana. The Albuginaceae, a group of plant parasitic, fungus-like organisms traditionally restricted to the genus Albugo (Pers.) Roussel (Cystopus Lev.), but to which Pustula Thines and Wilsoniana Thines were recently added (Thines & Spring 2005), differs from other Peronosporomycetes mainly by the sub epidermal location of the unbranched sporangiophores, and basipetal sporangiogenesis resulting in chains of sporangia. A feature only occasionally described is the presence of two kinds of sporangia. Tulasne (1854) was apparently the first to report this character in Wilsoniana portulacae (DC.
    [Show full text]
  • Observing Life in the Sea
    May 24, 2019 Observing Life in the Sea Sanctuaries MBON Monterey Bay, Florida Keys, and Flower Garden Banks National Marine Sanctuaries Principal Investigators: Frank Muller-Karger (USF) Francisco Chávez (MBARI) Illustration by Kelly Lance© 2016 MBARI Partners: E. Montes/M. Breitbart/A. Djurhuus/N. Sawaya1, K. Pitz/R. Michisaki2, Maria Kavanaugh3, S. Gittings/A. Bruckner/K. Thompson4, B.Kirkpatrick5, M. Buchman6, A. DeVogelaere/J. Brown7, J. Field8, S. Bograd8, E. Hazen8, A. Boehm9, K. O'Keife/L. McEachron10, G. Graettinger11, J. Lamkin12, E. (Libby) Johns/C. Kelble/C. Sinigalliano/J. Hendee13, M. Roffer14 , B. Best15 Sanctuaries MBON 1 College of Marine Science, Univ. of South Florida (USF), St Petersburg, FL; 2 MBARI/CenCOOS, CA; 3 Oregon State University, Corvallis, OR; 4 NOAA Office of National Marine Sanctuaries (ONMS), Washington, DC; 5 Texas A&M University (TAMU/GCOOS), College Station, TX; Monterey Bay, 6 NOAA Florida Keys National Marine Sanctuary (FKNMS), Key West, FL; Florida Keys, and 7 NOAA Monterey Bay National Marine Sanct. (MBNMS), Monterey, CA; Flower Garden Banks 8 NOAA SW Fisheries Science Center (SWFSC), La Jolla, CA, 9 Center for Ocean Solutions, Stanford University, Pacific Grove, CA; National Marine Sanctuaries 10 Florida Fish and Wildlife Research Institute (FWRI), St Petersburg, FL; 11NOAA Office of Response and Restoration (ORR), Seattle, WA; Principal Investigators: 12NOAA SE Fisheries Science Center (SEFSC), Miami, FL; Frank Muller-Karger (USF) 13NOAA Atlantic Oceanographic and Meteorol. Lab. (AOML), Miami,
    [Show full text]
  • I. Albuginaceae and Peronosporaceae) !• 2
    ANNOTATED LIST OF THE PERONOSPORALES OF OHIO (I. ALBUGINACEAE AND PERONOSPORACEAE) !• 2 C. WAYNE ELLETT Department of Plant Pathology and Faculty of Botany, The Ohio State University, Columbus ABSTRACT The known Ohio species of the Albuginaceae and of the Peronosporaceae, and of the host species on which they have been collected are listed. Five species of Albugo on 35 hosts are recorded from Ohio. Nine of the hosts are first reports from the state. Thirty- four species of Peronosporaceae are recorded on 100 hosts. The species in this family re- ported from Ohio for the first time are: Basidiophora entospora, Peronospora calotheca, P. grisea, P. lamii, P. rubi, Plasmopara viburni, Pseudoperonospora humuli, and Sclerospora macrospora. New Ohio hosts reported for this family are 42. The Peronosporales are an order of fungi containing the families Albuginaceae, Peronosporaceae, and Pythiaceae, which represent the highest development of the class Oomycetes (Alexopoulous, 1962). The family Albuginaceae consists of the single genus, Albugo. There are seven genera in the Peronosporaceae and four commonly recognized genera of Pythiaceae. Most of the species of the Pythiaceae are aquatic or soil-inhabitants, and are either saprophytes or facultative parasites. Their occurrence and distribution in Ohio will be reported in another paper. The Albuginaceae include fungi which are all obligate parasites of vascular plants, causing diseases known as white blisters or white rusts. These white blisters are due to the development of numerous conidia, sometimes called sporangia, in chains under the epidermis of the host. None of the five Ohio species of Albugo cause serious diseases of cultivated plants in the state.
    [Show full text]
  • Late Blight of Tomato (Phytophthora Infestans)
    Plant Disease Aug. 2008 PD-45 Late Blight of Tomato (Phytophthora infestans) Scot C. Nelson Department of Plant and Environmental Protection Sciences he tomato (Lycopersicon esculentum L.) is one of This publication describes late blight of tomato and the most widely grown vegetable food crops in the discusses ways to deal with this potentially devastating world,T second only to the potato. Crops of tomatoes plant disease. have socioeconomic importance to families, gardeners, farmers, laborers, marketers, retailers, chefs and other Host workers and services in the food and restaurant industries The tomato is a perennial plant in the Solanaceae, the in Hawai‘i. nightshade family, with weak, woody, densely hairy Tomatoes rank as the 10th most valuable agricultural stem that often vines over other plants. It reaches 3–10 commodity in the state, with a 2005 production value of ft in height (1–3 m) and bears clusters of edible fruits more than $9.7 million. In addition, there are numerous classified as vegetables. unaccounted backyard or small tomato gardens in the Native to Central, South, and southern North America state, making the tomato plant one of the most important (Mexico to Peru), tomato is now grown in most arable and widely grown food crops. locations of the world, either as an indoor or outdoor Yet, a humid and tropical environment favors certain crop, hydroponically or in soil. plant diseases. The fact that one lives in the subtrop- ics where the climate allows year-round cultivation of Pathogen tomatoes does not mean it is necessarily a good idea to Phytophthora infestans (Mont.) de Bary is not a true do so, as many unsuspecting gardeners have learned.
    [Show full text]
  • Phytophthora Palmivora–Cocoa Interaction
    Journal of Fungi Review Phytophthora palmivora–Cocoa Interaction Francine Perrine-Walker 1,2 1 School of Life and Environmental Sciences, The University of Sydney, LEES Building (F22), Camperdown, NSW 2006, Australia; [email protected] 2 The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia Received: 2 June 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: Phytophthora palmivora (Butler) is an hemibiotrophic oomycete capable of infecting over 200 plant species including one of the most economically important crops, Theobroma cacao L. commonly known as cocoa. It infects many parts of the cocoa plant including the pods, causing black pod rot disease. This review will focus on P. palmivora’s ability to infect a plant host to cause disease. We highlight some current findings in other Phytophthora sp. plant model systems demonstrating how the germ tube, the appressorium and the haustorium enable the plant pathogen to penetrate a plant cell and how they contribute to the disease development in planta. This review explores the molecular exchange between the oomycete and the plant host, and the role of plant immunity during the development of such structures, to understand the infection of cocoa pods by P. palmivora isolates from Papua New Guinea. Keywords: black pod rot; Oomycota; Theobroma cacao L.; infection; stem canker 1. Introduction Within the order Peronosporales, the largest genus with over 120 described species, Phytophthora is a hemibiotrophic phytogen capable of infecting a wide range of hosts, including many agricultural crops, worldwide [1,2]. One of the most economically important and delicious crops affected is cocoa (Theobroma cacao L.).
    [Show full text]
  • Mildiu De Las Cucurbitáceas
    NOTA TECNICA Rafart et al. Mildiu de las […] Mildiu de las cucurbitáceas Eliana Rafart, María Sol Gilardino, María Cristina Sandoval Cátedra de Fitopatología. Facultad de Ciencias Agrarias. Universidad Nacional de Lomas de Zamora. E- mail: [email protected] El mildiu es una enfermedad que puede afectar a las plantas hospedantes en todas las etapas fenológicas. Si bien solo infecta el follaje, la reducción en la actividad fotosintética en etapas tempranas del desarrollo de la planta causa atrofia de plantas y reducción en el rendimiento. Los síntomas se manifiestan de manera diferente en los distintos integrantes de la familia cucurbitáceas (Colucci y Holmes, 2010). Agente causal y Taxonomía: Pseudoperonospora cubensis (Berk. & Curt.) Rost. Se conocen 5 patotipos de P. cubensis, todos resultan infectivos sobre el pepino y el melón reticulado, pero no sobre la sandia, el zapallo y la calabaza. Motivo por el cual el pepino es generalmente el cultivo más afectado (Martínez González, 2006). Es un patógeno biotrofo que pertenece al Reino Straminipila, Phylum Oomycota, Familia Peronosporaceae, Orden Peronosporales, Clase Oomycetes. Descripción: Micelio hialino, no tabicado. Esporangióforos ramificados dicotómicamente en su tercio superior y en sus extremos se insertan los esporangios de forma individual. Esporangios de color gris violáceo (Figura 1), de forma ovoide a elipsoide, de 20-40 x 14-25 µm, de pared delgada y no papilados. Zoosporas biflageladas, de 10-13 µm de diámetro. Oosporas globosas, de 22-42 µm de diámetro, de color amarillo claro o hialinas (Martínez González et al., 2006). Síntomas: En pepino, calabaza y zapallo se observan lesiones angulares limitadas por las nervaduras.
    [Show full text]
  • Aquaperonospora Taiwanensis Gen. Et Sp. Nov. in Peronophythoraceae of Peronosporales
    Botanical Studies (2010) 51: 343-350. microbioloGY Aquaperonospora taiwanensis gen. et sp. nov. in Peronophythoraceae of Peronosporales Wen-Hsiung KO1,*, Mei-Ju LIN1, Chung-Yue HU2, and Pao-Jen ANN2 1Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan 2Division of Plant Pathology, Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan (Received June 16, 2009; Accepted November 25, 2009) ABSTRACT. Twelve isolates of a Pythium-like organism capable of producing Peronospora-like sporangiophores were isolated by baiting from an irrigation ditch in central Taiwan. This organism is described herein as a new genus and species, Aquaperonospora taiwanensis, in Peronophythoraceae of Peronosporales. Low sequence identities in both the ITS and 28S rDNA sequences between A. taiwanensis and representative species of other genera in Peronosporales supported the validity of the establishment of Aquaperonspora as a new genus. The groupings of A. taiwanensis and Pythium ostracodes, and Peronophythora litchii and Phytophthora infestans in both ITS and 28S phytogenetic trees were consistent with the suggestions that Aquasponospora and Peronophythora are transitional genera between Pythium and Peronospora, and Phythophthora and Peronospora, respectively. Based on this study and those reported by others, the determinate growth of sporangiophores is no longer a tenable distinguishing characteristic of Peronosporaceae or Peronophythoraceae. A new key to the families of Peronosporales is, therefore, presented. Keywords: Albuginaceae; Determinate growth; Irrigation ditch; Peronophythoraceae; Peronosporaceae; Peronosporales; Pythiaceae. INTRODUCTION ditch at the experimental farm of the Taiwan Agricultural Research Institute, Wufeng, Taichung. Water in the During our survey of the distribution of Phytophthora ditch originated from runoff water from the forests on and Pythium in Taiwan (Ko et al., 2004; 2006), ten isolates the mountain.
    [Show full text]
  • Morphological and Molecular Discrimination Among Albugo Candida Materials Infecting Capsella Bursa-Pastoris World-Wide
    Fungal Diversity Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide Young-Joon Choi1, Hyeon-Dong Shin1*, Seung-Beom Hong2 and Marco Thines3 1Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea 2Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea 3Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany Choi, Y.J., Shin, H.D., Hong, S.B. and Thines, M. (2007). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity 27: 11-34. The genus Albugo with A. candida as the type species causes white blister rust disease in economically important crops. Recently, molecular approaches revealed the high degree of genetic diversity exhibited within A. candida complex. However, before any taxonomic division of the complex at the species level, the correct status of A. candida on Capsella bursa- pastoris, from which it was originally described, should be determined. A worldwide study of white rust pathogens on C. bursa-pastoris was performed on 36 specimens, using morphological analysis and sequence analysis from the cytochrome c oxidase subunit II (COX2) region of mtDNA, the internal transcribed spacer (ITS) region of the rDNA, and D1 and D2 regions of the nrDNA. Specimens were obtained from Asia (India, Korea, Palestine), Europe (England, Finland, Germany, Hungary, Ireland, Latvia, Netherlands, Romania, Russia, Sweden, Switzerland), North and South America (Argentina, Canada, USA), and Oceania (Australia). The molecular data indicated strong support for a species partition separating Korean and other continental specimens.
    [Show full text]
  • Pseudoperonospora Cubensis
    Which Morphological Characteristics Are Most Influenced by the Host Matrix in Downy Mildews? A Case Study in Pseudoperonospora cubensis Fabian Runge1, Beninweck Ndambi1,2, Marco Thines3,4,5* 1 University of Hohenheim, Institute of Botany, Stuttgart, Germany, 2 University of Hohenheim, Institute of Plant Production and Agroecology in the Tropics and Subtropics, Stuttgart, Germany, 3 Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany, 4 Senckenberg Gesellschaft fu¨r Naturforschung, Frankfurt (Main), Germany, 5 Johann Wolfgang Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt (Main), Germany Abstract Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness.
    [Show full text]