Taxonomic Aspects of Peronosporaceae Inferred from Bayesian Molecular Phylogenetics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Salisapiliaceae</I> Œ a New Family of Oomycetes from Marsh Grass Litter
Persoonia 25, 2010: 109–116 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X551763 Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America J. Hulvey1, S. Telle 2, L. Nigrelli 2, K. Lamour 1*, M. Thines 2,3* Key words Abstract Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from internal transcribed spacer leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that nuclear ribosomal large subunit (nrLSU) bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora Peronosporales s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were phylogeny placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence Pythiaceae and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new ge- nus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration. -
Downy Mildew of Pearl Millet and Its Management
Downy Mildew of Pearl Millet and its Management HS Shetty, S Niranjan Raj, KR Kini, HR Bishnoi, R Sharma BS Rajpurohit, RS Mahala, HP Yadav, SK Gupta and OP Yadav All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research) Mandor, Jodhpur 342 304, Rajasthan, India Correct Citation: Shetty HS, Raj Niranjan S, Kini KR, Bishnoi HR, Sharma R, Rajpurohit BS, Mahala RS, Yadav HP, Gupta SK and Yadav OP. 2016. Downy Mildew of Pearl Millet and its Management. All In- dia Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Mandor, Jodhpur – 342 304. 53 pp. Lasertypeset & printed at M/s Royal Offset Printers, A-89/1, Naraina Industrial Area, Phase-I, New Delhi-110028 Downy Mildew of Pearl Millet and its Management Content Chapter Page No. 1. Introduction 1 2. Diseases of pearl millet 1 3. Downy mildew 2 3.1 Host range 2 3.2 Symptoms 3 3.3 Yield losses 4 3.4 Pathogen biology 5 3.5 Disease cycle 7 3.6 Establishment of pathogen culture and maintenance of isolates 9 3.7 Epidemiology 11 3.8 Screening techniques 13 3.9 Variability in pathogen 18 4. Downy mildew management 30 4.1 Host - plant resistance 30 4.2 Genetic diversification of hybrids 34 4.3 Chemical control 35 4.4 Cultural methods 37 4.5 Biological control 38 4.6 Integrated disease management 41 5. Future thrust 42 6. References 44 v vi Tables Table 1 Downy mildew incidence (%) in PMDMVN-2014 at soft dough stage across 11 locations in India Table 2 On-farm surveys conducted in India to monitor the prevalence of downy mildew -
Integrated Carrots
Integrated management of Pythium diseases of carrots E Davison and A McKay Department of Agriculture, Western Australia Project Number: VG98011 VG98011 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 0333 6 Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2001 Horticulture Australia FINAL REPORT HORTICULTURE AUSTRALIA PROJECT VG98011 INTEGRATED MANAGEMENT OF PYTHIUM DISEASES OF CARROTS E. M. Davison and A. G. McKay Department of Agriculture, Western Australia DEPARTMENT OF Agriculture Horticulture Australia September 2001 HORTICULTURE AUSTRALIA PROJECT VG 98011 Principal Investigator Elaine Davison Research Officer, Crop Improvement Institute, Department of Agriculture, Locked Bag 4, Bentley Deliver Centre, Western Australia 6983 Australia Email: edavisonfSjagric.wa.gov.au This is the final report of project VG 98011 Integrated management of Pythium diseases of carrots. It covers research into the cause(s) of cavity spot and related diseases in carrot production areas in Australia, together with information on integrated disease control. -
INHERITANCE of AVIRULENCE in Sclerospora Graminicola (Schroet) and RESISTANCE in PEARL MILLET to the PATHOGEN
INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (Schroet) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN CHANDRAMANI RAJ M.Sc. (Ag.) DOCTOR OF PHILOSOPHY IN AGRICULTURE (PLANT PATHOLOGY) 2017 INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (Schroet) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN BY CHANDRAMANI RAJ M.Sc. (Ag.) THESIS SUBMITTED TO THE PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN AGRICULTURE (PLANT PATHOLOGY) CHAIRPERSON: Dr. B. PUSHAPAVATHI DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE RAJENDRANAGAR HYDERABAD-500 030 PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY 2017 DECLARATION I, CHANDRAMANI RAJ, hereby declare that the thesis entitled “INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (SCHROET) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN” submitted to the Professor Jayashankar Telangana State Agricultural University for the degree of DOCTOR OF PHILOSOPHY IN AGRICULTURE is the result of original research work done by me. I also declare that no material contained in this thesis has been published earlier in any manner. Place: Rajendranagar (CHANDRAMANI RAJ) Date: I. D. No. RAD/12-19 CERTIFICATE Mr. CHANDRAMANI RAJ has satisfactorily prosecuted the course of research and that thesis entitled “INHERITANCE OF AVIRULENCE IN Sclerospora graminicola (SCHROET) AND RESISTANCE IN PEARL MILLET TO THE PATHOGEN” submitted is the result of original research and is of sufficiently high -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Elicitation of Grapevine Defense Responses Against Plasmopara Viticola , the Causal Agent of Downy Mildew
Elicitation of grapevine defense responses against Plasmopara viticola , the causal agent of downy mildew Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fachbereiche der Justus-Liebig-Universität Gießen Durchgeführt am Institut für Phytopathologie und Angewandte Zoologie Vorgelegt von M.Sc. Moustafa Selim aus Kairo, Ägypten Dekan: Prof. Dr. Peter Kämpfer 1. Gutachter: Prof. Dr. Karl-Heinz Kogel 2. Gutachterin: Prof. Dr. Tina Trenczek Dedication / Widmung I. DEDICATION / WIDMUNG: Für alle, die nach Wissen streben Und ihren Horizont erweitern möchten bereit sind, alles zu geben Und das Unbekannte nicht fürchten Für alle, die bereit sind, sich zu schlagen In der Wissenschaftsschlacht keine Angst haben Wissen ist Macht **************** For all who seek knowledge And want to expand their horizon Who are ready to give everything And do not fear the unknown For all who are willing to fight In the science battle Who have no fear Because Knowledge is power I Declaration / Erklärung II. DECLARATION I hereby declare that the submitted work was made by myself. I also declare that I did not use any other auxiliary material than that indicated in this work and that work of others has been always cited. This work was not either as such or similarly submitted to any other academic authority. ERKLÄRUNG Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig angefertigt und nur die angegebenen Quellen and Hilfsmittel verwendet habe und die Arbeit der anderen wurde immer zitiert. Die Arbeit lag in gleicher oder ahnlicher Form noch keiner anderen Prufungsbehorde vor. II Contents III. CONTENTS I. DEDICATION / WIDMUNG……………...............................................................I II. ERKLÄRUNG / DECLARATION .…………………….........................................II III. -
Bioimaging Structural Signatures of the Oomycete Pathogen Sclerospora Graminicola in Pearl Millet Using Different Microscopic Te
www.nature.com/scientificreports OPEN Bioimaging structural signatures of the oomycete pathogen Sclerospora graminicola in pearl millet using diferent microscopic techniques Hunthrike Shekar Shetty1, Sharada Mysore Suryanarayan2, Sudisha Jogaiah3*, Aditya Rao Shimoga Janakirama1, Michael Hansen4, Hans Jørgen Lyngs Jørgensen 4 & Lam-Son Phan Tran5,6* In this case study, the mycelium growth of Sclerospora graminicola in the infected tissues of pearl millet and the process of sporulation and liberation of sporangia and zoospores were observed using four diferent microscopic techniques. The cotton blue-stained samples observed under light microscope revealed the formation of zoospores with germ tubes, appressoria and initiation of haustorium into the host cells, while the environmental scanning electron microscopy showed the rapid emergence of sporangiophores with dispersed sporangia around the stomata. For fuorescence microscopy, the infected leaf samples were stained with Fluorescent Brightener 28 and Calcofuor White, which react with β-glucans present in the mycelial walls, sporangiophores and sporangia. Calcofour White was found to be the most suitable for studying the structural morphology of the pathogen. Therefore, samples observed by confocal laser scanning microscopy (CLSM) were pre-treated with Calcofuor White, as well as with Syto-13 that can stain the cell nuclei. Among the four microscopic techniques, CLSM is ideal for observing live host-pathogen interaction and studying the developmental processes of the pathogen in the host tissues. The use of diferent microscopic bioimaging techniques to study pathogenesis will enhance our understanding of the morphological features and development of the infectious propagules in the host. Many oomycete plant pathogens cause a considerable loss in food crops, including cereals, legumes, oil seeds, vegetables, and fruit crops1. -
Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
Mycology Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli Melanie N. Mitchell, Cynthia M. Ocamb, Niklaus J. Grünwald, Leah E. Mancino, and David H. Gent First, second, and fourth authors: Department of Botany and Plant Pathology, third author: United States Department of Agriculture– Agricultural Research Service (USDA-ARS), Horticultural Crops Research Unit; and fifth author: USDA-ARS, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis. Accepted for publication 6 March 2011. ABSTRACT Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and in nuclear, mitochondrial, and ITS phylogenetic analyses, with the Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperono- exception of isolates of P. humuli from Humulus japonicus from Korea. spora cubensis and P. h u m u l i . Phytopathology 101:805-818. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. h um u li descended from P. cubensis. Host-specificity The most economically important plant pathogens in the genus experiments were conducted with two reportedly universally susceptible Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. cubensis and P. hu m u li, causal agents of downy mildew on cucurbits and P. cubensis consistently infected the hop cultivars at very low rates, and hop, respectively. Recently, P. humuli was reduced to a taxonomic sporangiophores invariably emerged from necrotic or chlorotic hyper- synonym of P. cubensis based on internal transcribed spacer (ITS) sensitive-like lesions. Only a single sporangiophore of P. -
Economic Cost of Invasive Non-Native Species on Great Britain F
The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat. -
Phytophthora Pathogens Threaten Rare Habitats and Conservation Plantings
Phytophthora pathogens threaten rare habitats and conservation plantings Susan J. Frankel1, Janice Alexander2, Diana Benner3, Janell Hillman4 & Alisa Shor5 Abstract Phytophthora pathogens are damaging native wildland vegetation including plants in restoration areas and botanic gardens. The infestations threaten some plants already designated as endangered and degrade high-value habitats. Pathogens are being introduced primarily via container plant nursery stock and, once established, they can spread to adjacent areas where plant species not previously exposed to pathogens may become infected. We review epidemics in California – caused by the sudden oak death pathogen Phytophthora ramorum Werres, De Cock & Man in ‘t Veld and the frst USA detections of P. tentaculata Krber & Marwitz, which occurred in native plant nurseries and restoration areas – as examples to illustrate these threats to conservation plantings. Introduction stock) (Liebhold et al., 2012; Parke et al., Phytophthora (order: Peronosporales; 2014; Jung et al., 2015; Swiecki et al., kingdom: Stramenopila) pathogens 2018b; Sims et al., 2019). Once established, have increasingly been identifed as Phytophthora spp. have the potential associated with plant dieback and to reduce growth, kill and cause other mortality in restoration areas (Bourret, undesirable impacts on a wide variety of 2018; Garbelotto et al., 2018; Sims et al., native or horticultural vegetation (Brasier 2019), threatened and endangered species et al., 2004; Hansen 2007, 2011; Scott & habitat (Swiecki et al., 2018a), botanic Williams, 2014; Jung et al., 2018). gardens and wildlands in coastal California In this review, we focus on the (Cobb et al., 2017; Metz et al., 2017) and consequences of two pathogen southern Oregon (Goheen et al., 2017). -
Modern Techniques in Colorado Potato Beetle (Leptinotarsa Decemlineata Say) Control and Resistance Management: History Review and Future Perspectives
insects Review Modern Techniques in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives Martina Kadoi´cBalaško 1,* , Katarina M. Mikac 2 , Renata Bažok 1 and Darija Lemic 1 1 Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; [email protected] (R.B.); [email protected] (D.L.) 2 Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, Australia; [email protected] * Correspondence: [email protected]; Tel.: +385-1-239-3654 Received: 8 July 2020; Accepted: 22 August 2020; Published: 1 September 2020 Simple Summary: The Colorado potato beetle (CPB) is one of the most important potato pest worldwide. It is native to U.S. but during the 20th century it has dispersed through Europe, Asia and western China. It continues to expand in an east and southeast direction. Damages are caused by larvae and adults. Their feeding on potato plant leaves can cause complete defoliation and lead to a large yield loss. After the long period of using only chemical control measures, the emergence of resistance increased and some new and different methods come to the fore. The main focus of this review is on new approaches to the old CPB control problem. We describe the use of Bacillus thuringiensis and RNA interference (RNAi) as possible solutions for the future in CPB management. RNAi has proven successful in controlling many pests and shows great potential for CPB control. Better understanding of the mechanisms that affect efficiency will enable the development of this technology and boost potential of RNAi to become part of integrated plant protection in the future. -
Identification and Alternative Management of Downy Mildew in Rose
Revista Mexicana de Ciencias Agrícolas volume 9 number 8 November 12 - December 31, 2018 Article Identification and alternative management of downy mildew in rose Pablo Israel Álvarez Romero1 Rómulo García Velasco1§ Martha Elena Mora Herrera1 Martha Lidya Salgado Siclan2 Daniel Domínguez Serrano1 Tenancingo University Center-Autonomous University of the State of Mexico. Road Tenancingo-Villa Guerrero km 1.5, Tenancingo, State of Mexico. ZC. 52400. Tel 01 (714) 1407724. (pablo-alvarez- [email protected], [email protected], [email protected]). Faculty of Agricultural Sciences- Autonomous University of the State of Mexico. The Cerrillo Piedras Blancas, Toluca, State of Mexico, ZC. 50200. Tel. 01 (722) 2965529. ([email protected]). §Corresponding author: [email protected]. Abstract The downy mildew caused by Peronospora sparsa Berkeley is one of the most important diseases of the rose bush in Mexico, causing 100% losses. Its management is based on fungicides in continuous applications that tend to generate resistant populations. The search for alternatives is indispensable. In the present work, the morphometric and molecular identity of the agent associated with the downy mildew of the rose was confirmed, the effectiveness of the potassium phosphite (K3PO3), chitosan, silicon and mefenoxam was evaluated for the management of the disease and its effect on the length and diameter of floral stem. The study was conducted in summer and fall of 2013 in Tenancingo, State of Mexico. The morphometric characterization was carried out under a compound and scanning electron microscope. For molecular characterization, the ribosomal DNA of the ITS region was amplified with primers PS3 and PS1. The treatments were: potassium phosphite (K3PO3), chitosan, silicon, mefenoxam and control and were applied at weekly intervals.