Autonomous Navigation System for High Altitude Balloons

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Navigation System for High Altitude Balloons DOCTORAL T H E SIS Department of Computer Science, Electrical and Space Engineering Division of Space Technology Kanika Garg Autonomous Navigation System for High Altitude Balloons System for High Autonomous Navigation Kanika Garg ISSN 1402-1544 ISBN 978-91-7790-486-1 (print) ISBN 978-91-7790-487-8 (pdf) Luleå University of Technology 2019 Autonomous Navigation System for High Altitude Balloons Kanika Garg Onboard Space Systems AUTONOMOUS N AVIGATIO N SYSTEM FOR HIGH ALTITUDE BALLOO NS kanika garg Supervisors:thomas kuhn & olle norberg IndustrialSupervisor:kent andersson Kanika Garg : Autonomous Navigation System for High Altitude Balloons, c November 2019 Printed by Luleå Technical University, Graphic Production 2019 ISSN 1402 − 1544 ISBN 978 − 91 − 7790 − 486 − 1 (print) ISBN 978 − 91 − 7790 − 487 − 8 (pdf) Luleå 2019 www.ltu.se ABSTRACT High-altitude scientific balloons are platforms for space and environmental research as well as for testing future spacecraft and instruments. However, operating such balloons is a challenging task. Balloons work on the principle of buoyancy, and once deployed in the atmosphere, they are subjected to various dynamical and thermal forces. These forces make the balloon flight complex, as they are dependent upon various atmospheric parameters, which are not easy to estimate. Furthermore, a few hours after deployment, a high-altitude balloon reaches equilibrium in terms of buoyancy and floats in the direction of the winds, making the balloon flight uncertain as winds are not known to a great extent at such altitudes. To alter the trajectory, the balloon has to be taken to different wind layers with different wind directions or speeds. Presently, to explore the wind layers the balloon itself is used as a probe. The two manoeuvres that are used by the balloon pilot for exploring these wind layers are ballasting and venting. However, the number of ballasting and venting operations per flight is limited due to a limited amount of lift gas and ballast material, and continuous search for wind layers is thus not possible. As a result, balloon trajectory forecasting poses several challenging problems since the subject is both complex and multidisciplinary. Consequently, balloon mission preparation requires an accurate and re- liable prediction methodology for both weather and trajectory, in order to accomplish the mission successfully. This research work focusses on two aspects of ballooning: (a) determination of balloon ascent and (b) finding an optimal sequence of manoeuvres in order to navigate balloons autonomously. To solve problem (a), a standard analytical model, a fuzzy model, and a statistical regression model are developed and compared to predict the zero-pressure balloon ascent. To solve problem (b), different sensors and data models are studied in order to understand the environment in which these scientific balloons fly and challenges associated with that. Next, rein- forcement learning algorithms are applied to optimize the manoeuvres and to allow for autonomous flights. iv SAMMANFATTNING Höghöjdsballonger är plattformar för rymd- och miljöforskning, såväl som för tester av framtida rymdfarkoster och instrument. Att flyga sådana bal- longer är en utmanande uppgift. Ballongerna verkar enligt Arkimedes princip, och när de släppts i atmosfären utsätts de för olika dynamiska- och termiska krafter. Dessa krafter gör ballongflygningen komplex, då de beror på olika atmosfärsparametrar vilka är svåra att uppskatta. Några timmar efter att en höghöjdsballong släppts når den ett jämviktsläge vid en viss höjd och driver då i vindriktningen, vilket ytterligare ökar ovissheten kring flygningen då det endast finns begränsad kunskap kring vindarna på dessa höjder. För att ändra flygbanan måste ballongen föras till olika vindlager, med olika vindriktningar eller vindstyrkor. I nuläget används ballongen själv som sond för att utforska de olika vindlagren, och de två manövrar som ballongpiloten använder är att släppa ballast och att släppa ut gas. Antalet manövrar per flygning är dock begränsat på grund av den begränsade mängden ballast och gas ombord, kontinuerligt sökande efter vindlager är därför inte möjligt. Banberäkningar för höghöjdsballonger består som ett resultat av detta av ett flertal utmanande problem, då området är både komplext och multidisciplinärt. Framgångsrika ballongflygningar kräver precisa och tillförlitliga metoder för väderprognoser och banberäkningar. Detta forskningsarbete fokuserar på två aspekter av ballongflygning: (a) bestämning av ballongens uppstigning och (b) att hitta en optimal sekvens av manövrar för att autonomt kunna navigera ballongen. För att lösa problem (a) utvecklas och jämförs en analytisk-, en oskarp logik-, och en statistisk modell i syfte att kunna förutse ballongens uppstigning. För att lösa problem (b) studeras olika sensorer och datamodeller för att förstå omgivningen i vilken höghöjdsballongerna flyger och de utmaningar som detta medför, varefter förstärkningslärande algoritmer används för att optimera manövrar och åstadkomma autonoma flygningar. v PUBLICATIONS Kanika Garg and Reza Emami. “Aerobot Design for Planetary Explorations.” In: 2016 AIAA SPACE, p. 5448 Kanika Garg and Reza Emami. “Fuzzy Modelling of Zeropressure Balloon Ascent.” In: 2018 Modeling and Simulation Technologies, p. 3753 Kanika Garg and M Reza Emami. “Balloon ascent prediction: Comparative study of analytical, fuzzy and regression models.” In: Advances in Space Research 64.1 (2019), pp. 252–270 Kanika Garg and Thomas Kuhn. “Balloon Balloon design for Mars, Venus, and Titan atmospheres.” Submitted to: Applied Sciences in October 2019 Kanika Garg, Tobias Roos, Thomas Kuhn & Olle Norberg, “Wind based nav- igation of ZP balloons using reinforcement learning.” Submitted to: Advances in Space Research in November 2019 vii ACKNOWLEDGMENTS This work is influenced by the contributions of a lot of people who along the way supported me, encouraged me or simply inspired or fascinated me, and here are a few acknowledgements. Thomas, I am grateful to you for your guidance, help, and support. Olle, I would like to express my gratitude to you for all the help during this past one year and for career advice. Mikael Danielsson, I am thankful to you for providing me the balloon flight data and for all the discussions regarding stratospheric winds and balloon ascent. Kent, thank you for your support with the collaboration with Swedish Space Corporation. Mark, thanks a lot for all the discussions regarding my research tasks, and for providing valuable guidance and feedback. Rita, thank you for your help during these past few months with the wind data and your feedback and help with it. I would also like to thank my previous supervisor Reza Emami. Chris, Sumeet, Niklas, and Moses! You guys are great office colleagues, and now friends. Thank you for your support and understanding. Victoria, Maria, and Anette, thank you for your warmness, and patience. To the entire present and past LTU staff, I am grateful to you for these four years and for all the help. Thanks to the Graduate School of Space Technology, Space for Innovation and Growth (RIT), Swedish National Space Agency, and SSC, for funding this work and for organizing different activities. I really appreciated it. Marta-Lena and Magnus, thank you for your patience, advice, and commitment to the graduate school. Christina, I would like to extend my deep gratitude to you for all the productive sessions. Advice given by you has been of a great help. Prof Ramesha C and Dr B.N. Suresh, it has been many years (almost 9) since I saw you last, but I think of both of you often. You have inspired me in a way no one has. Thank you, for everything. Robert, Jule, Piritta, Maria, Angéle, and Philipp! Thanks for providing happy distraction to rest my mind outside of my research! Looking forward to your many visits to Stockholm! Chandru and Vishal! Thank you for being there, anytime and everytime, I needed you! Mum and Papa, kismat wale bacho ko aapke jaise parents milte hai, aapka dhnyawad duniya ke koi shabd nai kar sakte! To my siblings (Radhika, Abhi, Parth) - thank you for listening to me at odd hours, and for bringing in good and happy spirit all the time. ix Tobias, there can not be a better partner than you - personally & profes- sionally. I will forever be grateful to you! Thank you for all the discussions, enthusiasm, and proof reading. Thanks for keeping up with me! To different open source communities (LATEX Stack Overflow, Medium Work, etc), thank you for providing answers to so many odd questions and for writing articles that are easy to understand! To my favorite authors, Robert Jordan, and Arthur C Clarke, your books have been my safe escape for the entire duration of my PhD, thank you! To Carl Sagan - You are - and will always be the inspiration! x CONTENTS 1 introduction 1 1.1 History of ballooning 1 1.2 High-altitude balloon flight 5 1.3 Research aim and methodology 6 1.4 Contribution of this work 7 1.5 Thesis outline 8 2 ascent prediction - analytical simulation 9 2.1 Analytical Simulation 10 2.1.1 Input data 11 2.1.2 Illustrative results 13 2.2 Validation of simulation 15 2.2.1 Case 1 - HADT-1B flight May 2019 15 2.2.2 Case 2 - HADT-1A flight August 2018 16 2.3 Monte Carlo simulations 18 2.3.1 Operational uncertainty 20 2.3.2 Environment uncertainty 21 2.4 Conclusion and future work 25 3 ascent prediction - data models 27 3.1 Linear regression models 27 3.2 Regression trees 28 3.3 Support vector machines 29 3.4 Ensembles of trees 31 3.5 Summary and conclusion 32 4 wind
Recommended publications
  • Potential of Polarization/Raman Lidar to Separate Fine Dust, Coarse Dust
    Atmos. Meas. Tech., 10, 3403–3427, 2017 https://doi.org/10.5194/amt-10-3403-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles Rodanthi-Elisavet Mamouri1,2 and Albert Ansmann3 1Cyprus University of Technology, Dep. of Civil Engineering and Geomatics, Limassol, Cyprus 2The Cyprus Institute, Energy, Environment, and Water Research Center, Nicosia, Cyprus 3Leibniz Institute for Tropospheric Research, Leipzig, Germany Correspondence to: Rodanthi-Elisavet Mamouri ([email protected]) Received: 26 April 2017 – Discussion started: 4 May 2017 Revised: 28 July 2017 – Accepted: 2 August 2017 – Published: 19 September 2017 Abstract. We applied the recently introduced polarization advantages in comparison to 355 and 1064 nm polarization lidar–photometer networking (POLIPHON) technique for lidar approaches and leads to the most robust and accurate the first time to triple-wavelength polarization lidar measure- POLIPHON products. ments at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long- Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON 1 Introduction method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the Polarization lidar is a very powerful remote sensing tool for new, extended approach to separate even the fine and coarse aerosol and cloud research. The technique has been used for dust backscatter fractions. We show that the traditional and a long time to monitor and investigate cirrus cloud systems the advanced method are compatible and lead to a consis- (e.g., Sassen, 1991, 2005; Reichardt et al., 2002, 2008) and tent set of dust and non-dust profiles at simplified, less com- polar stratospheric cloud evolution (see, e.g., Browell et al., plex aerosol layering and mixing conditions as is the case 1990; Achtert and Tesche, 2014).
    [Show full text]
  • GAS DIVISION NEWSLETTER Official Publication of the BFA Gas Division
    GAS DIVISION NEWSLETTER Official Publication of the BFA Gas Division Volume 4, Issue 2 Copyright Peter Cuneo & Barbara Fricke, 2003 August 2003 On Saturday morning, we were greeted with a hotel RACE TO KITTY HAWK message saying the morning launch had been cancelled by Ray Bair but a briefing would take place at 7:00 a.m. The entire day was scrubbed due to substantial thunderstorms just west of Dayton in Indiana. As it turned out, the storms dissipated, and the day was pleasant for visiting the As part of the centennial celebration of powered various museums and city historic sites. That evening, flight, RE/MAX sponsored a Balloon Celebration we were treated to a reception at the Air Force Museum which included both hot air and gas flights for the and a briefing that made a Sunday morning launch seem weekend of the Fourth of July. At least that was the possible. Again the threat of severe weather prevented a plan. While about half the field of hot air balloons Saturday night launch. Later that night I found myself finally flew on Sunday morning, the gas flight was clustered in the main briefing room as the hotel staff totally scrubbed. gathered everyone for a tornado “drill”. The intended gas competition was an accuracy flight Sunday morning we were back on the field and once to the monument marking the first flight of the again prepared the equipment for launch. Another Wright brothers in Kitty Hawk, N.C. This is about couple of hours Sunday morning was only slightly better 500 miles from the launch site at Wright Patterson as the local weather allowed launch of some of the hot AFB in Dayton, Ohio.
    [Show full text]
  • We Help Earth Benefit from Space in Summary 2019 Contents
    WE HELP EARTH BENEFIT FROM SPACE IN SUMMARY 2019 CONTENTS About this report 2019 HIGHLIGHTS This is an English summary of Swedish 3 Space Corporation’s (SSC) 2019 Annual and Sustainability Report. CEO STATEMENT The Swedish report, available at our web- 4 site, is the legally binding annual report. THIS IS SSC The report summarizes the 2019 fiscal 6 year and covers performance on issues most important to SSC's ability to deliver SSC GLOBAL PRESENCE value to stakeholders in a changing and complex business environment. This 8 summary serves as our United Nations Global Compact (UNGC) Communi- EVOLVING SPACE LANDSCAPE 9 cations on Progress. Visit: STRATEGIC APPROACH https://www.sscspace.com/about-ssc/finances/reports-archive/ 10 Copyright: Unless otherwise indicated, SSC has the copyright to images in this publication. FOCUS AREAS FOR PROFITABLE SUSTAINABLE GROWTH 12 EMPLOYEES - OUR GREATEST ASSET 14 MEET OUR PEOPLE 15 2019 HIGHLIGHTS 2019 HIGHLIGHTS 2019 was another year of exciting space missions and projects for the space sector as a whole, but also for SSC. The rapid development has allowed us to grow and take new steps to prepare for the future. MASER 14 and inauguration of SubOrbital Express as a service Our MASER 14 sounding rocket reached an altitude of approximately 250 kilometers and spent over six minutes in microgravity. The mission inaugurated SubOrbital Express, a service to enable research into microgravity applications, atmospheric physics or other scientific disciplines. In this microgravity environment, we conducted experiments on fluid drainage, X-ray radio graphy and dust formation. Read more: https://www.suborbitalexpress.com Inauguration of exciting antenna art in Inuvik The two SSC antennas at the Inuvik site are painted by the local artists Anick Jenks and Ron English.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Beyond the Paths of Heaven the Emergence of Space Power Thought
    Beyond the Paths of Heaven The Emergence of Space Power Thought A Comprehensive Anthology of Space-Related Master’s Research Produced by the School of Advanced Airpower Studies Edited by Bruce M. DeBlois, Colonel, USAF Professor of Air and Space Technology Air University Press Maxwell Air Force Base, Alabama September 1999 Library of Congress Cataloging-in-Publication Data Beyond the paths of heaven : the emergence of space power thought : a comprehensive anthology of space-related master’s research / edited by Bruce M. DeBlois. p. cm. Includes bibliographical references and index. 1. Astronautics, Military. 2. Astronautics, Military—United States. 3. Space Warfare. 4. Air University (U.S.). Air Command and Staff College. School of Advanced Airpower Studies- -Dissertations. I. Deblois, Bruce M., 1957- UG1520.B48 1999 99-35729 358’ .8—dc21 CIP ISBN 1-58566-067-1 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited. ii Contents Chapter Page DISCLAIMER . ii OVERVIEW . ix PART I Space Organization, Doctrine, and Architecture 1 An Aerospace Strategy for an Aerospace Nation . 3 Stephen E. Wright 2 After the Gulf War: Balancing Space Power’s Development . 63 Frank Gallegos 3 Blueprints for the Future: Comparing National Security Space Architectures . 103 Christian C. Daehnick PART II Sanctuary/Survivability Perspectives 4 Safe Heavens: Military Strategy and Space Sanctuary . 185 David W. Ziegler PART III Space Control Perspectives 5 Counterspace Operations for Information Dominance .
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • Esrange Launching Programme
    ESRANGE SPACE CENTER EASP LAUNCHING PROGRAMME 16 AUGUST 2021 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rx/Bx TW SSC Cust Conf 2020 HEMERA SB 2020-2 Student balloon 1 balloon 1 balloon Mini-BOOSTER HEMERA SB 2020-1 3 balloons 2020 1 balloons SPIDER 2 1 IM rocket EOSTRE 1 balloon STERN 2020-2 LEONIS 1 rocket CNES 2021 BEXUS 30/31 STORT SF3 LTU IWC 16 MAPHEUS-11 4 balloons 2 balloons 1 Imp. Orion 1 Balloon 1 IM/IM rocket STORT SF1&2 TEXUS 57 BOLT-1 2Imp. Orion 1 VSB-30 rocket 1 S-31/IO rocket NO parachute test 2021 3-6 drops BROR test HADT 2021 REXUS 27/28 2 balloons STORT TF1 2 Imp. Orion rockets LTU IWC 17 1 IO rocket 1 Balloon HEMERA-2 MAPHEUS-9/10 CNES Pre-campaign 1 balloon 2 IM/IM rockets NASA summer 2022 / SUNRISE-3 REXUS 29/30 4 balloons BEXUS 32/33 2 Imp. Orion rockets SERA 4 2 balloons 1 rocket HADT 2022 TEXUS 58/59 (ESA) 2 balloons 2 VSB-30 rockets MIRIAM-2 MAIUS 2 HEMERA LSB-1 2022 1 IM/IO rocket 1 VSB-30 rocket 1 balloon BROR HIFLIER 1 1 IM/IO rocket 1 S-31/IO rocket S1X-M15 DLR ESBO STUDIO MAPHEUS-12 1 VSB-30 rocket 1 balloon 1 VSB-30 rocket STERN 2022-1 HyEnd 25th ESA-PAC symposium HEMERA-3 1 rocket Biarritz, France 1 balloon PERFORMED DECIDED TENTATIVE SCHEDULE UNDER CONSIDERATION NON-ESC LAUNCH PRE-TEST/OTHER EASTER ESRANGE SPACE CENTER EASP LAUNCHING PROGRAMME 16 AUGUST 2021 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rx/Bx TW 26th ESA-PAC symposium HEMERA2-1 BEXUS 34/35 Switzerland 1 balloon 2 balloons REXUS 31/32 2 Imp.
    [Show full text]
  • Japan's Technical Prowess International Cooperation
    Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Japan’s Technical Prowess Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness.
    [Show full text]
  • 1.Testbed Esrange for Advanced Space Technology Testing
    Olle Persson Verksamhetsledare LTU Luleå tekninska universitet satsar på rymdutbildning och forskning 1. “Rymden är ett framtidsområde, där Sverige har möjlighet att ta en europeisk tätposition” 2. 2 nya forsknimsområden inom rymd 3. Nya laboratorier 4. Universitetsövergripande projektledare Rymd: ”Det strategiska arbetet ska stimulera klustring inom och ökad positionering och synliggörande av områdena.” 1. Ståndpunkts-PM. 2. Nationellt samverkansprogram. 3. Expandera rymdforskningen och nya rymdutbildningar. 4. Kommande rymdforskarskola, centrumbildning, RIT, Almedalen Institutet för rymdfysik Syfte IRF är en myndighet under Utbildningsdepartementet och bedriver grundforskning och forskarutbildning i rymdfysik, rymdteknik och atmosfärfysik. IRF gör även tillämpad forskning i signalanalys, sensorteknik och satellitteknik. Mätningar görs med satelliter, ballonger och markbaserade instrument (t ex radar och optiska instrument). www.irf.se Institutet för rymdfysik Framtida projekt • EISCAT 3D • ALIS 4D • BepiColombo (2018) - en ESA/JAXA-mission till Merkurius • Chang’e 4 (2018) – en kinesisk mission till Månen • Solar Orbiter (2019) – en ESA-mission för att studera Solen • MIST (2020) – KTH:s studentsatellit • JUICE (2022) - en ESA-mission till Jupiters isiga månar • SpaceLab • Rymdväder www.irf.se SPACE LAB Detailed technical specifications . Atmospheric chambers . Mechanical testing in a semi-clean environment . Radiation TID . Calibration beam facility . Solar simulator 6 SPACE LAB 7 EISCAT Scientific Association • European Incoherent Geospace Environment SCATter • Associates: China, Finland, Japan, Norway, Sweden, U.K. • Affiliates: France, S. Korea, Ukraine • Founded in 1975, first operations 1981, first Svalbard operations 1996 • "The aim of the Association is to provide access to radar, and other, high- latitude facilities of the highest technical standard for non-military scientific purposes". • Locations: Tromsø (NO), Sodankylä (FI), Kiruna (SE), Longyearbyen Credit: J.
    [Show full text]
  • Paper Takes Flight Teacher Materials
    Paper Takes Flight Teacher Materials Contents: LESSON PLAN .............................................................................................................................. 1 Summary: .................................................................................................................................... 1 Objectives:................................................................................................................................... 1 Materials:..................................................................................................................................... 1 Safety Instructions:...................................................................................................................... 1 Background: ................................................................................................................................ 1 Procedure:.................................................................................................................................... 2 Discussion ................................................................................................................................... 2 Assessment/Evaluation:............................................................................................................... 3 Extensions: .................................................................................................................................. 3 Math Integration.........................................................................................................................
    [Show full text]
  • Norway in Space
    50 years Norway as a space nation 50 years as a space nation Contents Norway in space 4 Young rocket scientists on Andøya 36 First blast off 6 Leading the world in satellite communications 37 Our unknown multi-talent 10 Vital satellite navigation 42 The European road to space 13 Norway's eye in space 46 The space industry: innovative and traditional 16 At the top of the world 50 Earth watchers 20 To Mars from Svalbard 54 A place in the sun 27 Working in the space industry 58 The Norwegian northern lights pioneers 32 Europe's new time machine 60 Lasers in the night 34 CoveR PHoto: KolBJØRN DAHLE 50 years P H We are entitled to get excited now that we're celebrating oto Norway's 50th anniversary as a space nation We are : TRU entitled to be proud of the fact that the first rocket has been de E as a space nation N followed by more than a thousand others We are entitled G to be pleased with the sound scientific, commercial and societal expertise we have built up in space technology over the course of these 50 years Things have turned out very differently from what we envisaged when Ferdinand was launched in the 1960s We were very optimistic about space travel then, and many people believed that it was only a question of a few decades before we made it to Mars We envisaged a permanent set- tlement on the moon and that hotel breaks orbiting the Earth would soon become a holiday option There has been incredible development, but in a com- pletely different direction than into space What has actu- ally happened is that space technology has become
    [Show full text]
  • Atmospheric Planetary Probes And
    SPECIAL ISSUE PAPER 1 Atmospheric planetary probes and balloons in the solar system A Coustenis1∗, D Atkinson2, T Balint3, P Beauchamp3, S Atreya4, J-P Lebreton5, J Lunine6, D Matson3,CErd5,KReh3, T R Spilker3, J Elliott3, J Hall3, and N Strange3 1LESIA, Observatoire de Paris-Meudon, Meudon Cedex, France 2Department Electrical & Computer Engineering, University of Idaho, Moscow, ID, USA 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 4University of Michigan, Ann Arbor, MI, USA 5ESA/ESTEC, AG Noordwijk, The Netherlands 6Dipartment di Fisica, University degli Studi di Roma, Rome, Italy The manuscript was received on 28 January 2010 and was accepted after revision for publication on 5 November 2010. DOI: 10.1177/09544100JAERO802 Abstract: A primary motivation for in situ probe and balloon missions in the solar system is to progressively constrain models of its origin and evolution. Specifically, understanding the origin and evolution of multiple planetary atmospheres within our solar system would provide a basis for comparative studies that lead to a better understanding of the origin and evolution of our Q1 own solar system as well as extra-solar planetary systems. Hereafter, the authors discuss in situ exploration science drivers, mission architectures, and technologies associated with probes at Venus, the giant planets and Titan. Q2 Keywords: 1 INTRODUCTION provide significant design challenge, thus translating to high mission complexity, risk, and cost. Since the beginning of the space age in 1957, the This article focuses on the exploration of planetary United States, European countries, and the Soviet bodies with sizable atmospheres, using entry probes Union have sent dozens of spacecraft, including and aerial mobility systems, namely balloons.
    [Show full text]