Handbook on Precision Requirements and Variance Estimation for ESS Households Surveys

Total Page:16

File Type:pdf, Size:1020Kb

Handbook on Precision Requirements and Variance Estimation for ESS Households Surveys ISSN 1977-0375 Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS households surveys 2013 edition Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS household surveys 2013 edition Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*)0H The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-79-31197-0 ISSN 1977-0375 doi:10.2785/13579 Cat. No: KS-RA-13-029-EN-N Theme: General and regional statistics Collection: Methodologies & Working papers © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Acknowledgments Acknowledgments The European Commission expresses its gratitude and appreciation to the following members of the ESS1 Task Force, for their work on Precision Requirements and Variance Estimation for Household Surveys: Experts from the European Statistical System (ESS): Martin Axelson Sweden — Statistics Sweden Loredana Di Consiglio Italy — ISTAT Kari Djerf Finland — Statistics Finland Stefano Falorsi Italy — ISTAT Alexander Kowarik Austria — Statistics Austria Mārtiņš Liberts Latvia — CSB Ioannis Nikolaidis Greece — EL.STAT Experts from European universities: Yves Berger United Kingdom — University of Southampton Ralf Münnich Germany — University of Trier Coordinators of the Task Force from Eurostat unit ‘Quality, methodology and research’ (formerly ‘Methodology and research’): Jean-Marc Museux Chairman Denisa Camelia Florescu Coordinator Methodologists from elsewhere: Nicola Massarelli Eurostat unit ‘Labour market’ Albrecht Wirthmann Eurostat unit ‘Innovation and information society’ (formerly ‘Information society; tourism’) Onno Hoffmeister FAO2 The handbook received significant contributions from Guillaume Osier (Luxembourg — STATEC), working for SOGETI S.A., and specific contributions from Michele D’Alò (Italy — ISTAT) and from AGILIS S.A. experts. The handbook received useful comments from the reviewers Julia Aru (Estonia — Statistics Estonia), Harm Jan Boonstra (Netherlands — CBS), László Mihályffy (Hungary — Hungarian Central Statistical Office), Karim Moussallam (France — INSEE) and Paul Smith (UK — Office for National Statistics), and from the DIME3 members. 1 European Statistical System. 2 Initially attached to Eurostat unit ‘Government and sector accounts; Financial indicators’, member of the Eurostat network of methodologists. 3 Directors of Methodology of the National Statistical Institutes (NSIs) of the European Statistical System (ESS). Handbook on precision requirements and variance estimation for ESS household surveys 2 Foreword Foreword The quality of European statistics is essential for users. European legislation requires that a certain level of quality of statistics is guaranteed, and this quality has to be assessed. One important dimension of quality is accuracy. The accuracy is in the general statistical sense the degree of closeness of estimates to the true values and its components are variance and bias. The scope of this initiative is the variance requirements and estimation. Different statistical domains have been confronted with similar needs related to the variance of estimates. These needs range from setting up precision (variance) requirements and a process to assess compliance to the requirements (in EU Labour Force Survey – LFS), to developing procedures to streamline the production of standard errors of European statistics on the basis of the information provided by National Statistical Institutes (NSIs) of the European Statistical System - ESS (in the Community Survey on ICT4 Usage in Households and by Individuals). The initiatives launched by different statistical domains on similar issues called for a harmonisation of the methods in the ESS. In agreement with the ESS Directors of Methodology (DIME), the Eurostat Directorate ‘Methodology, corporate statistical and IT services’ (in charge of the methodological coordination and support both at Eurostat and ESS level) set up a Task Force (TF) with a generic mandate to issue general recommendations on variance requirements and estimation for ESS household surveys. The implementation of the general recommendations and the specific agreements at stake for LFS and ICT are decided by the domain specialists. Actually, a LFS domain specialist in Eurostat set up a domain specific TF which run in parallel with the DIME TF, discussed the general recommendations and provided valuable feedback to the DIME TF. The coordination between the two TFs was ensured by the Eurostat methodologists. With respect to the ICT, domain specialists in Eurostat are currently assessing the use of methods to estimate standard errors centrally in Eurostat. For efficiency reasons, the DIME TF was a think tank composed of a limited number of high profile experts in Member States, two high profile academic experts and the Eurostat methodologists involved in their respective projects. The handbook prepared under the auspices of the DIME TF was additionally submitted for review by experts designated from other Member States than those who participated to the DIME TF and was subsequently developed on specific issues. We expect that the general recommendations issued within this coordinated approach will provide a basis for a more harmonised/standardised approach of similar problems in other surveys. Antonio Baigorri Daniel Defays Head of Unit Director 4 Information and Communication Technology. Handbook on precision requirements and variance estimation for ESS household surveys 3 Table of contents Table of contents 1. Introduction ....................................................................................................................... 5 2. Precision requirements ...................................................................................................... 6 2.1 The two approaches for specifying precision requirements .......................................... 6 2.2 Precision measures in relation to type of indicators ....................................................12 2.3 Precision requirements and reporting domains ...........................................................16 2.4 Examples of precision thresholds/sizes ......................................................................18 2.5 Recommendations for a standard formulation of precision requirements ....................20 3. Best practices on variance estimation...............................................................................27 3.1 Overview of sampling designs in household surveys ..................................................27 3.2 Sources of variability of an estimator ..........................................................................31 3.3 Variance estimation methods: description, evaluation criteria and recommendations .37 3.4 Some recommended variance estimation methods to account for different sources of variability ..........................................................................................................................53 3.5 Software tools for variance estimation: presentation ...................................................65 3.6 Some examples of methods and tools used for variance estimation ...........................70 3.7 Sampling over time and sample coordination..............................................................71 3.7.1 Variance estimation for annual averages .............................................................76 3.7.2 Variance estimation for estimators of net change .................................................78 3.7.3 Estimation of gross change ..................................................................................85 4. Computing standard errors for national and European statistics .......................................89 4.1 Recommendations for improving computation of standard errors for national and European statistics ...........................................................................................................89 4.2 Possible methods for implementing the integrated approach of variance estimation ...95 5. Possible ways of assessing compliance with precision requirements ............................. 104 6. References ..................................................................................................................... 109 7. Appendix ........................................................................................................................ 120 7.1 Glossary of statistical terms ...................................................................................... 120 7.2 Design effect............................................................................................................. 130 7.3 Metadata template for variance estimation ............................................................... 138 7.4 Suitability of variance estimation methods for sampling designs and types of statistics ....................................................................................................................................... 151 7.5 Suitability of software tools for sampling designs and related issues on variance estimation ......................................................................................................................
Recommended publications
  • Chapter 4 Research Methodology
    The impact of E-marketing practices on market performance of small business enterprises. An empirical investigation. Item Type Thesis Authors El-Gohary, Hatem O.A.S. Rights <a rel="license" href="http://creativecommons.org/licenses/ by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by- nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http:// creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. Download date 26/09/2021 11:58:39 Link to Item http://hdl.handle.net/10454/4308 Chapter 4 Research Methodology 4.1 Introduction:- This chapter discusses the methodology used to conduct the research study as well as the issues related to the chosen research methodology when investigating the different factors affecting the adoption of E-Marketing by industrial and trading UK SBEs, the different forms, tools and levels of implementation of E-Marketing by these enterprises as well as the relationship between E-Marketing adoption and marketing performance of these SBEs. Through this discussion the steps that were taken to address the research design, the data collection and analysis methods used to conduct the research study will be illustrated. These issues are addressed in light of the basic research objectives and the relevant research questions discussed in chapter one and the research framework discussed in chapter seven. Firstly it discusses some possible research designs and methodologies and provides a brief review of the literature of research methodologies, research strategies and research methods implemented in the fields of E-Marketing and SBEs.
    [Show full text]
  • Evaluation Design Report for the National Cancer Institute's
    February 2009 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0210903.000.005 RTI Project Number 0210903.0001.005 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report February 2009 Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 Contents Section Page Acronyms Error! Bookmark not defined. Executive Summary ES-Error! Bookmark not defined. 1. Introduction Error! Bookmark not defined. 1.1 Overview of the NCCCP Error! Bookmark not defined. 1.2 Summary of the NCCCP Sites Error! Bookmark not defined. 1.3 Process Completed for an Evaluability Assessment Error! Bookmark not defined. 1.3.1 Step 1: Pilot Site Evaluability Assessment (September 2007–June 2008) .................................................. Error! Bookmark not defined. 1.3.2 Step 2: Engage Stakeholders (September 2007–September 2008)Error! Bookmark not defined.
    [Show full text]
  • Methods Used in the Development of the Global Roads Open Access Data Set (Groads), Version 1
    Methods Used in the Development of the Global Roads Open Access Data Set (gROADS), Version 1 Table of Contents Introduction ................................................................................................................................................................... 2 Data Assessment and Selection ..................................................................................................................................... 2 Root Mean Square Error (RMSE) ............................................................................................................................... 2 Validation against Google Earth (GE) imagery .......................................................................................................... 4 Calculating total length of roads ............................................................................................................................... 6 Choosing a data set for further edits ........................................................................................................................ 8 Data ingest: Creating and populating geodatabases ..................................................................................................... 8 Data editing ................................................................................................................................................................... 9 Creating a topology ..................................................................................................................................................
    [Show full text]
  • DHS Data Editing and Imputation Trevor Croft
    DHS Data Editing and Imputation Trevor Croft, Demographic and Health Surveys Abstract Producing good quality demographic and health data and making it accessible to data users worldwide is one of the main aims of the Demographic and Health Surveys program. However, large scale surveys in developing countries, particularly those collecting retrospective data, are prone to poor reporting. Survey data have suffered traditionally from incomplete and inconsistent reporting, To handle these problems, DHS performed extensive data editing operations. In addition, imputation procedures were established to deal with partial reporting of dates of key events in the respondent's life. General techniques for handling incomplete and inconsistent data are considered. The paper then presents the DHS approach to data editing. The major focus is on the editing of dates of events and the intervals between events. The editing and imputation process starts with the calculation of initial logical ranges for each date, and gradually constrains these ranges to produce final logical ranges. Inconsistent data are reported in error listings during this process. Dates are imputed for events with incomplete reporting within these final logical ranges. The levels of imputation required in the DHS-I surveys are presented. Various problem areas involved with the imputation of incomplete dates are explained. These include biases caused by questionnaire design, miscalculation of dates by interviewers and ancillary data biases. Problems relating to fine temporal variables and to unconstrained ranges for dates are also reviewed. Finally, the changes introduced as part of the editing and imputation procedures for DHS- II to resolve some of the problem areas are presented and ideas for further improvements are discussed.
    [Show full text]
  • Data Management, Analysis Tools, and Analysis Mechanics
    Chapter 2 Data Management, Analysis Tools, and Analysis Mechanics This chapter explores different tools and techniques for handling data for research purposes. This chapter assumes that a research problem statement has been formulated, research hypotheses have been stated, data collection planning has been conducted, and data have been collected from various sources (see Volume I for information and details on these phases of research). This chapter discusses how to combine and manage data streams, and how to use data management tools to produce analytical results that are error free and reproducible, once useful data have been obtained to accomplish the overall research goals and objectives. Purpose of Data Management Proper data handling and management is crucial to the success and reproducibility of a statistical analysis. Selection of the appropriate tools and efficient use of these tools can save the researcher numerous hours, and allow other researchers to leverage the products of their work. In addition, as the size of databases in transportation continue to grow, it is becoming increasingly important to invest resources into the management of these data. There are a number of ancillary steps that need to be performed both before and after statistical analysis of data. For example, a database composed of different data streams needs to be matched and integrated into a single database for analysis. In addition, in some cases data must be transformed into the preferred electronic format for a variety of statistical packages. Sometimes, data obtained from “the field” must be cleaned and debugged for input and measurement errors, and reformatted. The following sections discuss considerations for developing an overall data collection, handling, and management plan, and tools necessary for successful implementation of that plan.
    [Show full text]
  • 1 Computing Variances from Data with Complex Sampling Designs: A
    Computing Variances from Data with Complex Sampling Designs: A Comparison of Stata and SPSS North American Stata Users Group March 12-13, 2001 Alicia C. Dowd, Assistant Professor Univ. Mass. Boston, Graduate College of Education Wheatley Hall, 100 Morrissey Blvd. Boston MA 02125 [email protected] 617 287-7593 phone 617 287-7664 fax Michael B. Duggan, Director of Enrollment Research Suffolk University 8 Ashburton Place Boston MA 02108 [email protected] 617 573-8468 phone 617 720-0970 fax 1 Introduction The National Center for Education Statistics (NCES) is responsible for collecting, analyzing, and reporting data related to education in the United States and other countries (U.S. Department of Education, 1996, p. 2). Among the surveys conducted by the NCES, several pertain to postsecondary schooling and outcomes and are of interest to higher education researchers. These include Beginning Postsecondary Students (BPS), Baccalaureate and Beyond (B&B), National Postsecondary Student Aid Study (NPSAS), the National Study of Postsecondary Faculty (NSOPF), and the Integrated Postsecondary Education Data Set (IPEDS). With the exception of IPEDS, these surveys are conducted using complex survey designs, involving stratification, clustering, and unequal probabilities of case selection. Researchers analyzing these data must take the complex sampling designs into account in order to estimate variances accurately. Novice researchers and doctoral students, particularly those in colleges of education, will likely encounter issues surrounding the use of complex survey data for the first time if they undertake to analyze NCES data. Doctoral programs in education typically have minimal requirements for the study of statistics, and statistical theories are usually learned based on the assumption of a simple random sample.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • An Introduction to the Data Editing Process
    1 AN INTRODUCTION TO THE DATA EDITING PROCESS by Dania P. Ferguson United States Department of Agriculture National Agricultural Statistics Service Abstract: A primer on the various data editing methodologies, the impact of their usage, available supporting software, and considerations when developing new software. I. INTRODUCTION The intention of this paper is to promote a better understanding of the various data editing methods and the impact of their usage as well as the software available to support the use of the various methodologies. It is hoped that this paper will serve as: - a brief overview of the most commonly used editing methodologies, - an aid to organize further reading about data editing systems, - a general description of the data editing process for use by designers and developers of generalized data editing systems. II. REVIEW OF THE PROCESS Data editing is defined as the process involving the review and adjustment of collected survey data. The purpose is to control the quality of the collected data. This process is divided into four (4) major sub-process areas. These areas are: - Survey Management - Data Capture - Data Review - Data Adjustment The rest of this section will describe each of the four (4) sub-processes. 1. Survey Management The survey management functions are: a) completeness checking, and b) quality control including audit trails and the gathering of cost data. These functions are administrative in nature. Completeness checking occurs at both survey and questionnaire levels. 2 At survey level, completeness checking ensures that all survey data have been collected. It is vitally important to account for all samples because sample counts are used in the data expansion procedures that take place during Summary.
    [Show full text]
  • NCRM Social Sciences Research Methods Typology (2014)
    NCRM Social Sciences Research Methods Typology (2014) Level 1 Categories Level 2 Subcategories Level 3 Descriptor Terms Frameworks for Research and Research Designs Epistemology Philosophy of social science; Critical theory; Feminist methods; Humanistic methods; Interpretivism; Positivism; Postmodernism; Poststructuralism Descriptive Research Exploratory Research Explanatory Research and Causal analysis Comparative and Cross Cross-national research; National Research Cross-cultural research; Comparative research; Historical comparative research Survey Research Cross-Sectional Research Repeated cross-sections Longitudinal Research Panel survey; Cohort study; Qualitative longitudinal research (QLR); Mixed methods longitudinal research Experimental Research Experimental design; Laboratory studies; Randomized Control Trials (RCT) Quasi-Experimental Research Case-control studies; Difference-in-differences (DID); Paired comparison; Instrumental variables; Regression discontinuity; Twin studies Evaluation Research Policy evaluation; Consumer satisfaction; Theory of change methods Case Study Pilot Study Participatory Research Child-led research; Emancipatory research; Inclusive research; Indigenous methodology; 1 Participatory Action Research (PAR); User engagement Action Research Participatory Action Research (PAR) Ethnographic Research Behavioural Research Meta-Analysis Mantel-Haenszel methods Systematic Review Secondary Analysis Archival research; Documentary research; Analysis of official statistics; Analysis of existing survey data; Analysis
    [Show full text]
  • Approaches to Imputing Missing Data in Complex Survey Data
    Introduction Offerings Examples Results Conclusions Ending Approaches to imputing missing data in complex survey data Christine Wells, Ph.D. IDRE UCLA Statistical Consulting Group July 27, 2018 Christine Wells, Ph.D. Imputing missing data in complex survey data 1/ 28 Introduction Offerings Examples Results Conclusions Ending Three types of missing data with item non-response Missing completely at random (MCAR) Not related to observed values, unobserved values, or the value of the missing datum itself Missing at random (MAR) Not related to the (unobserved) value of the datum, but related to the value of observed variable(s) Missing not at random (MNAR) The value of the missing datum is the reason it is missing Each variable can have its own type of missing data mechanism; all three can be present in a given dataset Most imputation techniques only appropriate for MCAR and MAR data Christine Wells, Ph.D. Imputing missing data in complex survey data 2/ 28 Introduction Offerings Examples Results Conclusions Ending Different approaches to imputing missing complex survey data Stata: multiple imputation (mi) (and possibly full information maximum likelihood (FIML)) SAS: Four types of hotdeck imputation Fully efficient fractional imputation (FEFI) 2 stage FEFI Fractional hotdeck Hotdeck SUDAAN: Four methods Cox-Iannacchione weighted sequential hotdeck (WSHD) Cell mean imputation Linear regression imputation Logistic regression imputation Christine Wells, Ph.D. Imputing missing data in complex survey data 3/ 28 Introduction Offerings Examples Results Conclusions Ending Handling imputation variation Stata Multiple complete datasets SAS Imputation-adjusted replicate weights (not with hotdeck) BRR (Fay), Jackknife, Bootstrap Multiple imputation (only with hotdeck) SUDAAN Multiple versions of imputed variable (WSHD only) Christine Wells, Ph.D.
    [Show full text]
  • Assessing Sample Bias and Establishing Standardized
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data Fahmida Nilufar Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons Recommended Citation Nilufar, Fahmida, "Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data" (2003). LSU Master's Theses. 1204. https://digitalcommons.lsu.edu/gradschool_theses/1204 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ASSESSING SAMPLE BIAS AND ESTABLISHING STANDARDIZED PROCEDURES FOR WEIGHTING AND EXPANSION OF TRAVEL SURVEY DATA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering by Fahmida Nilufar B.S., Bangladesh University of Engineering and Technology, 1977 M.S., Bangladesh University of Engineering and Technology, 1985 August 2003 Acknowledgments I would like to express my appreciation to my advisor Dr. Chester Wilmot, for his valuable comments, guidance, support and patience throughout the process. I would also like to thank Dr. Brian Wolshon and Dr. Sherif Ishak for their thoughtful comments on the initial proposal of this work and for consenting to be on my graduate committee.
    [Show full text]
  • 2015 National Survey on Drug Use and Health
    2015 NATIONAL SURVEY ON DRUG USE AND HEALTH METHODOLOGICAL SUMMARY AND DEFINITIONS DISCLAIMER SAMHSA provides links to other internet sites as a service to its users and is not responsible for the availability or content of these external sites. SAMHSA, its employees, and contractors do not endorse, warrant, or guarantee the products, services, or information described or offered at these other internet sites. Any reference to a commercial product, process, or service is not an endorsement or recommendation by SAMHSA, its employees, or contractors. For documents available from this server, the U.S. Government does not warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed. Substance Abuse and Mental Health Services Administration Center for Behavioral Health Statistics and Quality Rockville, Maryland September 2016 2015 NATIONAL SURVEY ON DRUG USE AND HEALTH: METHODOLOGICAL SUMMARY AND DEFINITIONS Contract No. HHSS283201300001C RTI Project No. 0213984.004.107.006.004 RTI Project Director: David Hunter SAMHSA Project Officer: Peter Tice For questions about this report, please e-mail [email protected]. Prepared for Substance Abuse and Mental Health Services Administration, Rockville, Maryland Prepared by RTI International, Research Triangle Park, North Carolina September 2016 Recommended Citation: Center for Behavioral Health Statistics and Quality. (2016). 2015 National Survey on Drug Use and Health: Methodological summary
    [Show full text]