Some SAS-SUDAAN Comparisons

Total Page:16

File Type:pdf, Size:1020Kb

Some SAS-SUDAAN Comparisons NESUG 17 Analysis Variance Estimation With Complex Surveys: Some SAS-SUDAAN Comparisons Xiuhua Chen and Paul Gorrell Social & Scientific Systems, Inc. Abstract In version 8, SAS® introduced new procedures such as SURVEYMEANS and SURVEYREG for analyzing data from complex surveys (SURVEYFREQ and SURVEYLOGISTIC are part of V9). This paper compares the SAS and SUDAAN® implementation of the Taylor linearization method for variance estimation. Although both SAS and SUDAAN make use of this method (currently it's the only method available in SAS), there are important differences, such as assumptions concerning missing values (nonresponse) and subgroup analysis. Focusing on SURVEYMEANS, we will use concrete examples from two national healthcare databases (the Medical Expenditure Panel Survey and the HCUP Nationwide Inpatient Sample) to clarify these differences. Along the way we'll illustrate the syntax and keywords used in the SAS survey analysis PROCs (especially the STRATA, CLUSTER and DOMAIN statements). This paper should be useful for anyone analyzing data from complex surveys, especially SAS programmers who use SUDAAN for variance estimation. Introduction In our work we use SAS for a wide variety of tasks: restructuring data files, editing variables, statistical analysis, table and report generation, etc. Until recently we did not use SAS for variance estimation with complex survey data because SAS statistical procedures did not have the functionality for incorporating the design properties of complex surveys into the analysis, i.e. they assumed the design to be a simple random sample of an infinite population. In our experience this assumption generally leads to an underestimation of variance. To correctly estimate variance for complex surveys we have generally used SAS-callable SUDAAN whenever we needed to, for example, compute standard errors. More recently we have begun to test the SAS survey PROCs and compare their output with that generated by SUDAAN. This paper reports on some of those comparisons. We focus on SURVEYMEANS but many of the basic points of this paper apply to the other survey PROCs as well. This paper is not a general introduction to the SAS survey analysis PROCs (or even to SURVEYMEANS) and it will not answer all the questions you may have about using SAS for analyzing complex surveys, or how SAS compares to SUDAAN for different types of analyses. But we hope that reading this paper will put you in a better position to know what questions to ask when you first need to use a SAS survey procedure, or allow you to point someone in the right direction if they stop you in the hallway and ask why SAS and SUDAAN don't always produce the same standard errors. For a paper on variance estimation, this paper has a notable lack of statistical formulae. This is because we have targeted SAS programmers rather than statisticians. We have taken a 'functional' approach to discussing the SAS-SUDAAN differences we discuss here. Both the SAS and SUDAAN documentation contain excellent discussions of the statistical details which are built into their respective procedures. Variance Estimation with Complex Surveys A complex survey design is any design that is not a simple random sample (where each person in the target population has an equal chance of being selected in the survey). Complex designs involve dividing the population into groups and sampling the groups themselves (cluster sampling) and/or sampling from the groups (stratified sampling). 1 NESUG 17 Analysis When using SUDAAN to analyze data from complex surveys you have two general options for variance estimation. You can choose either Taylor linearization or a replication method. We won't discuss the replication methods (e.g. jackknife and balanced repeated measures) because they are currently unavailable in SAS. The Taylor method is used in both SAS and SUDAAN so this method will be assumed in the comparisons discussed in this paper. SAS and SUDAAN also have in common a default assumption of a with-replacement design. One important point to emphasize when analyzing data from complex surveys is that you should resist the normally efficient practice of subsetting to just those records that will be used in the analysis. This subverts the process of giving the procedures all the necessary survey design information with respect to strata and clusters. That is, if you are interested in a particular analysis of city-dwellers within a nationally-representative survey and subset to just this subpopulation before your analysis, you may be deleting information about the full design properties of the survey. You are more or less likely to do this depending on the criteria for subsetting. For example, subsetting to males from a typical national survey population is unlikely to exclude all records in a particular PSU and remove it from the analysis (and if it did you'd really want to know why!). Below we discuss the options in SAS and SUDAAN for analyzing subpopulations (or, domains) within a sample population. In this paper we will compare SAS and SUDAAN in four different situations: (1) a. The analysis includes all survey respondents and all respondents have non-missing values for the analysis variable. b. A subgroup analysis requires the use of the SURVEYMEANS DOMAIN statement or the SUDAAN SUBGROUP statement. c. The analysis includes all respondents but some respondents have missing values for the analysis variable causing some strata to have only one PSU (cluster). d. The analysis includes all respondents but some respondents have missing values for the analysis variable causing some PSUs (clusters) to have missing values (but all strata have 2 or more PSUs). In the comparisons we show below a survey weight variable is always used. When the WEIGHT statement is used both SAS and SUDAAN exclude records with nonpositive weights from the analysis. The Household Component of the Medical Expenditure Panel Survey (MEPS HC) The MEPS HC is a nationally representative survey of the U.S. civilian noninstitutionalized population. It collects medical expenditure data as well as information on demographic characteristics, access to health care, health insurance coverage, as well as income and employment data. MEPS is cosponsored by the Agency for Healthcare Research and Quality (AHRQ) and the National Center for Health Statistics (NCHS). For the comparisons reported here we used the MEPS 2001 Full Year Consolidated Data File (HC-060). This is a public use file available for download from the MEPS web site (http://www.meps.ahrq.gov). See also the MEPS Factsheet "Computing Standard Errors for MEPS Estimates", also available from the MEPS web site. The MEPS is not a simple random sample, its design includes stratification, clustering, multiple stages of selection, as well as disproportionate sampling. The MEPS public use files (such as HC-060) include variables for generating weighted national estimates and for use of the Taylor method for variance estimation. These variables are: person-level weight (PERWT01F on HC-060); stratum (VARSTR01 on HC-060); and cluster/psu (VARPSU01 on HC-060). 2 NESUG 17 Analysis PROC SURVEYMEANS (SAS) In this section we will first review the basic syntax of SURVEYMEANS. We will then generate some estimates and standard deviations and errors using the 2001 MEPS full year file (HC-060). Note that we used SAS 8.2 for the comparisons reported here. Initial tests with 9.1.2 reveal no differences. SYNTAX The following illustrates the relevant syntax and statements for PROC SURVEYMEANS: (2) proc surveymeans data= hc060 sum std mean stderr; strata VARSTR01 / list; cluster VARPSU01; weight PERWT01F; var TOTEXP01; run; The options selected on the PROC SURVEYMEANS statement are SUM, STD (standard deviation of the sum), MEAN, and STDERR (standard error of the mean). The STRATA statement (you can also use "STRATUM" when you have one variable and you're fussy about your Latin) is where you list the strata variables if you have a stratified sample. The LIST option causes SAS to generate a Stratum Information table which lists the variables and sampling rates for each stratum, as well as the number of records and clusters for each stratum and analysis variable. This can be very handy information. For example, for the MEPS HC-060 file the Stratum Information table shows that each stratum has at least 2 PSUs (clusters). The head of this table shows the following information. (3) Number of Strata 145 Number of Clusters 557 Number of Observations 33556 Number of Observations Used 32122 Number of Obs with Nonpositive Weights 1434 Sum of Weights 284247327 The 1,434 records with nonpositive weights are excluded prior to analysis. The N value that appears in the LST output will be 32,122 (number of observations used). For TOTEXP01 the NMISS value will be zero because all records have a non-missing value for this analysis variable. The CLUSTER statement is where (you guessed it!) you list the cluster variables. For MEPS (as with all stratified samples), clusters are nested within strata (we'll see this explicitly when the NEST statement in SUDAAN is discussed). This may be obvious but it's worth pointing out that SAS will not tell you the sample design of the data you're working with. You need to know the design of the survey that produced the data and how those design properties are to be specified in the SAS (or, SUDAAN) survey procedures. The Federal agencies responsible for distributing public use files for data such as the MEPS, HCUP or the National Health Interview Survey (NHIS) do an excellent job of providing documentation of survey design and data file properties. The WEIGHT statement is self-explanatory. Records with nonpositive or missing weight values are excluded from the analysis. The VAR statement lists the analysis variables. Here TOTEXP01 is the 2001 MEPS total expenditure variable.
Recommended publications
  • 1 Computing Variances from Data with Complex Sampling Designs: A
    Computing Variances from Data with Complex Sampling Designs: A Comparison of Stata and SPSS North American Stata Users Group March 12-13, 2001 Alicia C. Dowd, Assistant Professor Univ. Mass. Boston, Graduate College of Education Wheatley Hall, 100 Morrissey Blvd. Boston MA 02125 [email protected] 617 287-7593 phone 617 287-7664 fax Michael B. Duggan, Director of Enrollment Research Suffolk University 8 Ashburton Place Boston MA 02108 [email protected] 617 573-8468 phone 617 720-0970 fax 1 Introduction The National Center for Education Statistics (NCES) is responsible for collecting, analyzing, and reporting data related to education in the United States and other countries (U.S. Department of Education, 1996, p. 2). Among the surveys conducted by the NCES, several pertain to postsecondary schooling and outcomes and are of interest to higher education researchers. These include Beginning Postsecondary Students (BPS), Baccalaureate and Beyond (B&B), National Postsecondary Student Aid Study (NPSAS), the National Study of Postsecondary Faculty (NSOPF), and the Integrated Postsecondary Education Data Set (IPEDS). With the exception of IPEDS, these surveys are conducted using complex survey designs, involving stratification, clustering, and unequal probabilities of case selection. Researchers analyzing these data must take the complex sampling designs into account in order to estimate variances accurately. Novice researchers and doctoral students, particularly those in colleges of education, will likely encounter issues surrounding the use of complex survey data for the first time if they undertake to analyze NCES data. Doctoral programs in education typically have minimal requirements for the study of statistics, and statistical theories are usually learned based on the assumption of a simple random sample.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • Handbook on Precision Requirements and Variance Estimation for ESS Households Surveys
    ISSN 1977-0375 Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS households surveys 2013 edition Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS household surveys 2013 edition Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*)0H The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-79-31197-0 ISSN 1977-0375 doi:10.2785/13579 Cat. No: KS-RA-13-029-EN-N Theme: General and regional statistics Collection: Methodologies & Working papers © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Acknowledgments Acknowledgments The European Commission expresses its gratitude and appreciation to the following members of the ESS1 Task Force, for their work on Precision Requirements and Variance Estimation for Household Surveys: Experts from the European Statistical System (ESS): Martin Axelson Sweden — Statistics Sweden Loredana Di Consiglio Italy — ISTAT Kari Djerf Finland — Statistics Finland Stefano Falorsi Italy — ISTAT Alexander Kowarik Austria — Statistics Austria Mārtiņš Liberts Latvia — CSB Ioannis Nikolaidis Greece — EL.STAT Experts from European
    [Show full text]
  • Approaches to Imputing Missing Data in Complex Survey Data
    Introduction Offerings Examples Results Conclusions Ending Approaches to imputing missing data in complex survey data Christine Wells, Ph.D. IDRE UCLA Statistical Consulting Group July 27, 2018 Christine Wells, Ph.D. Imputing missing data in complex survey data 1/ 28 Introduction Offerings Examples Results Conclusions Ending Three types of missing data with item non-response Missing completely at random (MCAR) Not related to observed values, unobserved values, or the value of the missing datum itself Missing at random (MAR) Not related to the (unobserved) value of the datum, but related to the value of observed variable(s) Missing not at random (MNAR) The value of the missing datum is the reason it is missing Each variable can have its own type of missing data mechanism; all three can be present in a given dataset Most imputation techniques only appropriate for MCAR and MAR data Christine Wells, Ph.D. Imputing missing data in complex survey data 2/ 28 Introduction Offerings Examples Results Conclusions Ending Different approaches to imputing missing complex survey data Stata: multiple imputation (mi) (and possibly full information maximum likelihood (FIML)) SAS: Four types of hotdeck imputation Fully efficient fractional imputation (FEFI) 2 stage FEFI Fractional hotdeck Hotdeck SUDAAN: Four methods Cox-Iannacchione weighted sequential hotdeck (WSHD) Cell mean imputation Linear regression imputation Logistic regression imputation Christine Wells, Ph.D. Imputing missing data in complex survey data 3/ 28 Introduction Offerings Examples Results Conclusions Ending Handling imputation variation Stata Multiple complete datasets SAS Imputation-adjusted replicate weights (not with hotdeck) BRR (Fay), Jackknife, Bootstrap Multiple imputation (only with hotdeck) SUDAAN Multiple versions of imputed variable (WSHD only) Christine Wells, Ph.D.
    [Show full text]
  • 2015 National Survey on Drug Use and Health
    2015 NATIONAL SURVEY ON DRUG USE AND HEALTH METHODOLOGICAL SUMMARY AND DEFINITIONS DISCLAIMER SAMHSA provides links to other internet sites as a service to its users and is not responsible for the availability or content of these external sites. SAMHSA, its employees, and contractors do not endorse, warrant, or guarantee the products, services, or information described or offered at these other internet sites. Any reference to a commercial product, process, or service is not an endorsement or recommendation by SAMHSA, its employees, or contractors. For documents available from this server, the U.S. Government does not warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed. Substance Abuse and Mental Health Services Administration Center for Behavioral Health Statistics and Quality Rockville, Maryland September 2016 2015 NATIONAL SURVEY ON DRUG USE AND HEALTH: METHODOLOGICAL SUMMARY AND DEFINITIONS Contract No. HHSS283201300001C RTI Project No. 0213984.004.107.006.004 RTI Project Director: David Hunter SAMHSA Project Officer: Peter Tice For questions about this report, please e-mail [email protected]. Prepared for Substance Abuse and Mental Health Services Administration, Rockville, Maryland Prepared by RTI International, Research Triangle Park, North Carolina September 2016 Recommended Citation: Center for Behavioral Health Statistics and Quality. (2016). 2015 National Survey on Drug Use and Health: Methodological summary
    [Show full text]
  • Security Systems Services World Report
    Security Systems Services World Report established in 1974, and a brand since 1981. www.datagroup.org Security Systems Services World Report Database Ref: 56162 This database is updated monthly. Security Systems Services World Report SECURITY SYSTEMS SERVICES WORLD REPORT The Security systems services Report has the following information. The base report has 59 chapters, plus the Excel spreadsheets & Access databases specified. This research provides World Data on Security systems services. The report is available in several Editions and Parts and the contents and cost of each part is shown below. The Client can choose the Edition required; and subsequently any Parts that are required from the After-Sales Service. Contents Description ....................................................................................................................................... 5 REPORT EDITIONS ........................................................................................................................... 6 World Report ....................................................................................................................................... 6 Regional Report ................................................................................................................................... 6 Country Report .................................................................................................................................... 6 Town & Country Report ......................................................................................................................
    [Show full text]
  • Download This PDF File
    Control Theory and Informatics www.iiste.org ISSN 2224-5774 (print) ISSN 2225-0492 (online) Vol 2, No.1, 2012 The Trend Analysis of the Level of Fin-Metrics and E-Stat Tools for Research Data Analysis in the Digital Immigrant Age Momoh Saliu Musa Department of Marketing, Federal Polytechnic, P.M.B 13, Auchi, Nigeria. Tel: +2347032739670 e-mail: [email protected] Shaib Ismail Omade (Corresponding author) Department of Statistics, School of Information and Communication Technology, Federal Polytechnic, P.M.B 13, Auchi, Nigeria. Phone: +2347032808765 e-mail: [email protected] Abstract The current trend in the information technology age has taken over every spare of human discipline ranging from communication, business, governance, defense to education world as the survival of these sectors depend largely on the research outputs for innovation and development. This study evaluated the trend of the usage of fin-metrics and e-stat tools application among the researchers in their research outputs- digital data presentation and analysis in the various journal outlets. The data used for the study were sourced primarily from the sample of 1720 out of 3823 empirical on and off line journals from various science and social sciences fields. Statistical analysis was conducted to evaluate the consistency of use of the digital tools in the methodology of the research outputs. Model for measuring the chance of acceptance and originality of the research was established. The Cockhran test and Bartlet Statistic revealed that there were significant relationship among the research from the Polytechnic, University and other institution in Nigeria and beyond. It also showed that most researchers still appeal to manual rather than digital which hampered the input internationally and found to be peculiar among lecturers in the system that have not yet appreciate IT penetration in Learning.
    [Show full text]
  • Strengths and Limitations of Using SUDAAN, Stata, and Wesvarpc for Computing Variances from NCES Data Sets
    NATIONAL CENTER FOR EDUCATION STATISTICS Working Paper Series The Working Paper Series was initiated to promote the sharing of the valuable work experience and knowledge reflected in these preliminary reports. These reports are viewed as works in progress, and have not undergone a rigorous review for consistency with NCES Statistical Standards prior to inclusion in the Working Paper Series. U. S. Department of Education Office of Educational Research and Improvement NATIONAL CENTER FOR EDUCATION STATISTICS Working Paper Series Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing Variances from NCES Data Sets Working Paper No. 2000-03 February 2000 Contact: Ralph Lee Statistical Standards Program E-mail: [email protected] U. S. Department of Education Office of Educational Research and Improvement U.S. Department of Education Richard W. Riley Secretary Office of Educational Research and Improvement C. Kent McGuire Assistant Secretary National Center for Education Statistics Gary W. Phillips Acting Commissioner The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries. NCES activities are designed to address high priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high quality data to the U.S.
    [Show full text]
  • Describing the PRAMS Sample Design for SUDAAN, SAS Complex Survey, SPSS Complex Samples Modules, and STATA
    Describing the PRAMS Sample Design for SUDAAN, SAS Complex Survey, SPSS Complex Samples Modules, and STATA CDC PRAMS has performed the following actions while constructing an analysis dataset for external researchers. External researchers may skip this step and proceed directly to SUDAAN/SAS/SPSS/STATA analysis (step II below). I. Combine the single-year/single-state weighted PRAMS SAS datasets into a single analysis dataset. A. Restrict the dataset to respondents only: IF INQX=1; B. Combine the state stratification scheme (variable STRATUMC) and sample year (variable NEST_YR) into a single variable: SUD_NEST = (STRATUMC*10000) + NEST_YR; C. Sort the dataset by new variable SUD_NEST: PROC SORT DATA=<pramsdata>; BY SUD_NEST; II. Describe the PRAMS Sample Design to the analysis software. A. SUDAAN 1. Use the following statements when using SUDAAN modules: proc crosstab data=<pramsdata> design=strwor; nest sud_nest; totcnt totcnt; samcnt samcnt; weight wtanal; B. SAS Complex Survey 1. Construct a new SAS dataset describing the population count for each sampling stratum. The new dataset will have one observation per sampling stratum and two variables: SUD_NEST (the sampling stratum) and _TOTAL_ (the population count). One method for creating this dataset is as follows: Data totals_for_sas; Set <pramsdata> (keep= sud_nest totcnt); By sud_nest; If first.sud_nest; _total_=totcnt; Keep sud_nest _total_; Run; 2. Use the following statements when using SAS Complex Survey modules: proc surveyfreq data=<pramsdata> totals=totals_for_sas; strata sud_nest; weight wtanal; C. SPSS Complex Samples 1. To describe the PRAMS sample design, open your PRAMS dataset and choose Analyze/Complex samples/Prepare for Analysis/Create a plan file.
    [Show full text]
  • Choosing Statistical Software
    Choosing Statistical Software Brent Logan, PhD, Professor Mei-Jie Zhang, PhD, Professor Qun Xiang, MS, Biostatistician Medical College of Wisconsin, Division of Biostatistics Friday, June 15, 2012 12:00-1:00 pm Medical Education Building– M2050 The Medical College of Wisconsin is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The Medical College of Wisconsin designates this Live activity for a maximum of 1.0 AMA PRA Category 1 Credit(s) ™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Hours of Participation for Allied Health Professionals The Medical College of Wisconsin designates this activity for up to 1.0 hours of participation for continuing education for allied health professionals. 2 Financial Disclosure • In accordance with the ACCME® standard for Commercial Support Number 6, all in control of content disclosed any relevant financial relationships. The following in control of content had no relevant financial relationships to disclose. Name: Role in Meeting: Ruta Brazauskas, PhD Planning Committee Haley Montsma, BBA Planning Committee Brent Logan, PhD Speaker Mei-Jie Zhang, PhD Speaker Qun Xiang, MS Speaker 3 Learning Objectives • Familiarize the audience with basic statistical software options • Discuss the pros and cons of different types of software • Demonstrate the different types of software on a simple analysis 4 Evaluation Forms Your opinion matters! Help us plan future meetings,
    [Show full text]
  • Analyzing Complex Sample Survey Data Using SAS®, SPSS®, STATA®, and SUDAAN® Arlene B
    NESUG 18 Posters The Big Four: Analyzing Complex Sample Survey Data Using SAS®, SPSS®, STATA®, and SUDAAN® Arlene B. Siller, CDC/National Center for Health Statistics, Hyattsville, MD Linda Tompkins, CDC/National Center for Health Statistics, Hyattsville, MD Abstract The National Center for Health Statistics conducts surveys with probability-based complex sample designs to produce estimates of person health conditions, vital statistics, medical establishment characteristics, disparities in health status and use of health care by race/ethnicity, socio-economic status, and other population traits in the United States. Researchers usually present descriptive statistics such as means, totals, and their standard errors. However, in order to make statistically valid population inferences from sample data, standard errors must be computed using procedures that take into account the complex nature of the sample design. This paper compares estimates produced with four statistical packages (SAS, SPSS, STATA and SUDAAN) using data from two of the many surveys conducted by the Center. Introduction The complex design of sample surveys dictate that the statistical analysis procedures used to analyze the data have the ability to account for multiple stages of sampling, stratification, and clustering. The National Center for Health Statistics conducts such surveys to produce estimates of health conditions and access to medical care for the United States population. These usually include descriptive statistics such as means, totals, and their standard errors. The accompanying standard errors must be computed using procedures that take into account the complex nature of the sample design. In recent years, there has been an increasing effort by statistical software designers to incorporate such procedures.
    [Show full text]
  • Senior Statistician
    EMPLOYMENT OPPORTUNITY SR. STATISTICIAN The UCLA Center for Health Policy Research (the Center) has an outstanding opportunity for senior statistician. The Center, which was established in 1994, is based in the School of Public Health and is the premier source of health policy information for California. The Center is one of the nation's leading health policy research centers and the premier source of health policy information for California. Responsibilities: The senior statistician will work under the general supervision of the Director, Statistical Unit for the UCLA Center for Health Policy Research (Center), the Senior Statistician will perform methodology research, statistical support and analyses for research projects, data processing, data imputation, data file development and production for California Health Interview Survey (CHIS) data. The incumbent will conduct independent consultation with department representatives and principal investigators in the planning and implementation of major study projects; advise principal investigators on appropriate experimental designs and statistical tests in order that valid conclusions can be obtained; plan statistical analysis for research projects where designs are made complex by the numbers and kinds of variable number of levels of variables and/or interactions or relationships between variables consult with researchers to derive understanding of the hypotheses and experimental approaches; decide appropriate statistical analyses; develop mathematical models; and write and revise programs and macros for analysis as necessary using SAS, R, and other software such as Stata, SUDAAN, etc. Incumbent may participate in planning meetings with representatives of cooperating institutions for purposes of identifying and communicating necessary statistical approaches to meet research objectives. The incumbent will research and develop methods for measuring and analyzing health outcomes and evaluating efficacy of health programs.
    [Show full text]