Ophthalmic Fronts & Temples

Total Page:16

File Type:pdf, Size:1020Kb

Ophthalmic Fronts & Temples Ophthalmic Fronts & Temples PDF Express Edition Available from: Phone: +44 208 123 2220 or +1 732 587 5005 [email protected] Sales Manager: Alison Smith on +44 208 123 2220 [email protected] Ophthalmic Fronts & Temples Ophthalmic Fronts & Temples Ophthalmic Fronts & Temples The PDF report is an extract of the main database and provides a number of limited datasets for each of the countries covered. For users needing more information, detailed data on Ophthalmic Fronts & Temples is available in several geographic Editions and Database versions. Users can order any other Editions, or the full Database version, as required from the After-Sales Service or from any NIN Dealer at a discount. This research provides data on Ophthalmic Fronts & Temples. Contents Express Edition .......................................................................................................................................................... 4 Products & Markets .................................................................................................................................................... 4 Report Description ..................................................................................................................................................... 5 Tables ........................................................................................................................................................................ 5 Countries Covered ................................................................................................................................................... 10 Market Notes & Definitions ...................................................................................................................................... 11 Financial Notes & Definitions ................................................................................................................................... 15 Industry Norms Definitions ....................................................................................................................................... 22 Upgrade to the full Database Edition at a reduced cost .......................................................................................... 24 Database Editions ....................................................................................................................................................... 25 Editions available ..................................................................................................................................................... 26 World Report ............................................................................................................................................................ 26 Regional Report ....................................................................................................................................................... 26 Country Report ......................................................................................................................................................... 26 Country & City Report .............................................................................................................................................. 26 Markets & Products .................................................................................................................................................. 27 Products covered: .................................................................................................................................................... 27 World Database Description .................................................................................................................................... 28 Geographic Coverage .............................................................................................................................................. 30 Financial Data .......................................................................................................................................................... 31 General Contents ..................................................................................................................................................... 32 Database Edition Market Research Contents.......................................................................................................... 33 Databases & Structures ........................................................................................................................................... 33 2 Ophthalmic Fronts & Temples Spreadsheets ........................................................................................................................................................... 35 Chapters................................................................................................................................................................... 35 Countries .................................................................................................................................................................. 37 Methodology ............................................................................................................................................................ 40 Deliverables ............................................................................................................................................................. 40 About this Database ................................................................................................................................................. 40 Real Time Support ................................................................................................................................................... 40 Toolkits ..................................................................................................................................................................... 41 Proprietary Software package compatibility ............................................................................................................. 42 Resource Web ......................................................................................................................................................... 42 Research & Survey Methodology Analysis .............................................................................................................. 43 Appendix 1 : Regional Report country coverage ..................................................................................................... 44 Appendix 2 : About the After-Sales Service............................................................................................................. 45 Modular Research .................................................................................................................................................... 45 1. Market Research .................................................................................................................................................. 45 2. Distribution Channels & End Users Data ............................................................................................................. 45 3. Survey Data ......................................................................................................................................................... 46 4. Corporate Data .................................................................................................................................................... 47 5. Additional Data ..................................................................................................................................................... 51 Database Compatibility ............................................................................................................................................ 52 3 Ophthalmic Fronts & Temples Express Edition Ophthalmic Fronts & Temples NAICS / SIC / SERIES: P38511_M This PDF Express edition has 476 pages. Updated monthly. Years covered: Historic data for the past 7 years, and Forecast data for the next 7 years. Price: $950 Delivery: 24 hours as a downloaded PDF file, or shipped as a DVD. Products & Markets This report covers the following Product and Market Sectors:- Product & Market data is given in US$ for each Country, by each Product by each Year: Historic data for the past 7 years, and Forecast data for the next 7 years. OPHTHALMIC FRONTS + TEMPLES 1. Ophthalmic Fronts & Temples 2. Ophthalmic fronts & temples: Fronts, finished: Gold filled 3. Ophthalmic fronts & temples: Fronts, finished: Aluminum & other metal 4. Ophthalmic fronts & temples: Fronts, finished: Plastic fronts 5. Ophthalmic fronts & temples: Fronts, finished: Combination fronts 6. Ophthalmic fronts & temples: Temples, all types NAICS / SIC coded reports and databases This is a Market database which is designed to be compatible with U.S. government databases. For NAICS / SIC coded reports and databases, the report structures are an analogue of U.S. Department of Commerce / U.S. Census databases, and are an analogue of U.S. Census data, but in a worldwide context. For a full explanation of the NAICS coding system see: http://www.census.gov/eos/www/naics/ These product / revenue lines codes and definitions are determined by the U.S. Government agencies. 4 Ophthalmic Fronts & Temples Report Description Ophthalmic Fronts & Temples Report The Ophthalmic
Recommended publications
  • A Comparison of Six Numerical Software Packages for Educational Use in the Chemical Engineering Curriculum
    SESSION 2520 A COMPARISON OF SIX NUMERICAL SOFTWARE PACKAGES FOR EDUCATIONAL USE IN THE CHEMICAL ENGINEERING CURRICULUM Mordechai Shacham Department of Chemical Engineering Ben-Gurion University of the Negev P. O. Box 653 Beer Sheva 84105, Israel Tel: (972) 7-6461481 Fax: (972) 7-6472916 E-mail: [email protected] Michael B. Cutlip Department of Chemical Engineering University of Connecticut Box U-222 Storrs, CT 06269-3222 Tel: (860)486-0321 Fax: (860)486-2959 E-mail: [email protected] INTRODUCTION Until the early 1980’s, computer use in Chemical Engineering Education involved mainly FORTRAN and less frequently CSMP programming. A typical com- puter assignment in that era would require the student to carry out the following tasks: 1.) Derive the model equations for the problem at hand, 2.) Find an appropri- ate numerical method to solve the model (mostly NLE’s or ODE’s), 3.) Write and debug a FORTRAN program to solve the problem using the selected numerical algo- rithm, and 4.) Analyze the results for validity and precision. It was soon recognized that the second and third tasks of the solution were minor contributions to the learning of the subject material in most chemical engi- neering courses, but they were actually the most time consuming and frustrating parts of computer assignments. The computer indeed enabled the students to solve realistic problems, but the time spent on technical details which were of minor rele- vance to the subject matter was much too long. In order to solve this difficulty, there was a tendency to provide the students with computer programs that could solve one particular type of a problem.
    [Show full text]
  • Rapid Research with Computer Algebra Systems
    doi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations.
    [Show full text]
  • Work Package 2 Collection of Requirements for OS
    Consortium for studying, evaluating, and supporting the introduction of Open Source software and Open Data Standards in the Public Administration Project acronym: COSPA Wor k Package 2 Collection of requirements for OS applications and ODS in the PA and creation of a catalogue of appropriate OS/ODS Solutions D eliverable 2. 1 Catalogue of available Open Source tools for the PA Contract no.: IST-2002-2164 Project funded by the European Community under the “SIXTH FRAMEWORK PROGRAMME” Work Package 2, Deliverable 2.1 - Catalogue of available Open Source tools for the PA Project Acronym COSPA Project full title A Consortium for studying, evaluating, and supporting the introduction of Open Source software and Open Data Standards in the Public Administration Contract number IST-2002-2164 Deliverable 2.1 Due date 28/02/2004 Release date 15/10/2005 Short description WP2 focuses on understanding the OS tools currently used in PAs, and the ODS compatible with these tools. Deliverable D2.1 contains a Catalogue of available open source tools for the PA, including information about the OS currently in use inside PAs, the administrative and training requirements of the tools. Author(s) Free University of Bozen/Bolzano Contributor(s) Conecta, IBM, University of Sheffield Project Officer Tiziana Arcarese Trond Arne Undheim European Commission Directorate-General Information Society Directorate C - Unit C6- eGovernment, BU 31 7/87 rue de la Loi 200 - B-1049 Brussels - Belgium 26/10/04 Version 1.3a page 2/353 Work Package 2, Deliverable 2.1 - Catalogue of available Open Source tools for the PA Disclaimer The views expressed in this document are purely those of the writers and may not, in any circumstances, be interpreted as stating an official position of the European Commission.
    [Show full text]
  • Visualization of Complex Function Graphs in Augmented Reality
    M A G I S T E R A R B E I T Visualization of Complex Function Graphs in Augmented Reality ausgeführt am Institut für Softwaretechnik und Interaktive Systeme der Technischen Universität Wien unter der Anleitung von Univ.Ass. Mag. Dr. Hannes Kaufmann durch Robert Liebo Brahmsplatz 7/11 1040 Wien _________ ____________________________ Datum Unterschrift Abstract Understanding the properties of a function over complex numbers can be much more difficult than with a function over real numbers. This work provides one approach in the area of visualization and augmented reality to gain insight into these properties. The applied visualization techniques use the full palette of a 3D scene graph's basic elements, the complex function can be seen and understood through the location, the shape, the color and even the animation of a resulting visual object. The proper usage of these visual mappings provides an intuitive graphical representation of the function graph and reveals the important features of a specific function. Augmented reality (AR) combines the real world with virtual objects generated by a computer. Using multi user AR for mathematical visualization enables sophisticated educational solutions for studies dealing with complex functions. A software framework that has been implemented will be explained in detail, it is tailored to provide an optimal solution for complex function graph visualization, but shows as well an approach to visualize general data sets with more than 3 dimensions. The framework can be used in a variety of environments, a desktop setup and an immersive setup will be shown as examples. Finally some common tasks involving complex functions will be shown in connection with this framework as example usage possibilities.
    [Show full text]
  • Mathcad Tutorial by Colorado State University Student: Minh Anh Nguyen Power Electronic III
    MathCAD Tutorial By Colorado State University Student: Minh Anh Nguyen Power Electronic III 1 The first time I heard about the MathCAD software is in my analog circuit design class. Dr. Gary Robison suggested that I should apply a new tool such as MathCAD or MatLab to solve the design problem faster and cleaner. I decided to take his advice by trying to learn a new tool that may help me to solve any design and homework problem faster. But the semester was over before I have a chance to learn and understand the MathCAD software. This semester I have a chance to learn, understand and apply the MathCAD Tool to solve homework problem. I realized that the MathCAD tool does help me to solve the homework faster and cleaner. Therefore, in this paper, I will try my very best to explain to you the concept of the MathCAD tool. Here is the outline of the MathCAD tool that I will cover in this paper. 1. What is the MathCAD tool/program? 2. How to getting started Math cad 3. What version of MathCAD should you use? 4. How to open MathCAD file? a. How to set the equal sign or numeric operators - Perform summations, products, derivatives, integrals and Boolean operations b. Write a equation c. Plot the graph, name and find point on the graph d. Variables and units - Handle real, imaginary, and complex numbers with or without associated units. e. Set the matrices and vectors - Manipulate arrays and perform various linear algebra operations, such as finding eigenvalues and eigenvectors, and looking up values in arrays.
    [Show full text]
  • R G M B.Ec. M.Sc. Ph.D
    Rolando Kristiansand, Norway www.bayesgroup.org Gonzales Martinez +47 41224721 [email protected] JOBS & AWARDS M.Sc. B.Ec. Applied Ph.D. Economics candidate Statistics Jobs Events Awards Del Valle University University of Alcalá Universitetet i Agder 2018 Bolivia, 2000-2004 Spain, 2009-2010 Norway, 2018- 1/2018 Ph.D scholarship 8/2017 International Consultant, OPHI OTHER EDUCATION First prize, International Young 12/2016 J-PAL Course on Evaluating Social Programs Macro-prudential Policies Statistician Prize, IAOS Massachusetts Institute of Technology - MIT International Monetary Fund (IMF) 5/2016 Deputy manager, BCP bank Systematic Literature Reviews and Meta-analysis Theorizing and Theory Building Campbell foundation - Vrije Universiteit Halmstad University (HH, Sweden) 1/2016 Consultant, UNFPA Bayesian Modeling, Inference and Prediction Multidimensional Poverty Analysis University of Reading OPHI, Oxford University Researcher, data analyst & SKILLS AND TECHNOLOGIES 1/2015 project coordinator, PEP Academic Research & publishing Financial & Risk analysis 12 years of experience making economic/nancial analysis 3/2014 Director, BayesGroup.org and building mathemati- Consulting cal/statistical/econometric models for the government, private organizations and non- prot NGOs Research & project Mathematical 1/2013 modeling coordinator, UNFPA LANGUAGES 04/2012 First award, BCG competition Spanish (native) Statistical analysis English (TOEFL: 106) 9/2011 Financial Economist, UDAPE MatLab Macro-economic R, RStudio 11/2010 Currently, I work mainly analyst, MEFP Stata, SPSS with MatLab and R . SQL, SAS When needed, I use 3/2010 First award, BCB competition Eviews Stata, SAS or Eviews. I started working in LaTex, WinBugs Python recently. 8/2009 M.Sc. scholarship Python, Spyder RECENT PUBLICATIONS Disjunction between universality and targeting of social policies: Demographic opportunities for depolarized de- velopment in Paraguay.
    [Show full text]
  • 1 Computing Variances from Data with Complex Sampling Designs: A
    Computing Variances from Data with Complex Sampling Designs: A Comparison of Stata and SPSS North American Stata Users Group March 12-13, 2001 Alicia C. Dowd, Assistant Professor Univ. Mass. Boston, Graduate College of Education Wheatley Hall, 100 Morrissey Blvd. Boston MA 02125 [email protected] 617 287-7593 phone 617 287-7664 fax Michael B. Duggan, Director of Enrollment Research Suffolk University 8 Ashburton Place Boston MA 02108 [email protected] 617 573-8468 phone 617 720-0970 fax 1 Introduction The National Center for Education Statistics (NCES) is responsible for collecting, analyzing, and reporting data related to education in the United States and other countries (U.S. Department of Education, 1996, p. 2). Among the surveys conducted by the NCES, several pertain to postsecondary schooling and outcomes and are of interest to higher education researchers. These include Beginning Postsecondary Students (BPS), Baccalaureate and Beyond (B&B), National Postsecondary Student Aid Study (NPSAS), the National Study of Postsecondary Faculty (NSOPF), and the Integrated Postsecondary Education Data Set (IPEDS). With the exception of IPEDS, these surveys are conducted using complex survey designs, involving stratification, clustering, and unequal probabilities of case selection. Researchers analyzing these data must take the complex sampling designs into account in order to estimate variances accurately. Novice researchers and doctoral students, particularly those in colleges of education, will likely encounter issues surrounding the use of complex survey data for the first time if they undertake to analyze NCES data. Doctoral programs in education typically have minimal requirements for the study of statistics, and statistical theories are usually learned based on the assumption of a simple random sample.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • End-User Probabilistic Programming
    End-User Probabilistic Programming Judith Borghouts, Andrew D. Gordon, Advait Sarkar, and Neil Toronto Microsoft Research Abstract. Probabilistic programming aims to help users make deci- sions under uncertainty. The user writes code representing a probabilistic model, and receives outcomes as distributions or summary statistics. We consider probabilistic programming for end-users, in particular spread- sheet users, estimated to number in tens to hundreds of millions. We examine the sources of uncertainty actually encountered by spreadsheet users, and their coping mechanisms, via an interview study. We examine spreadsheet-based interfaces and technology to help reason under uncer- tainty, via probabilistic and other means. We show how uncertain values can propagate uncertainty through spreadsheets, and how sheet-defined functions can be applied to handle uncertainty. Hence, we draw conclu- sions about the promise and limitations of probabilistic programming for end-users. 1 Introduction In this paper, we discuss the potential of bringing together two rather distinct approaches to decision making under uncertainty: spreadsheets and probabilistic programming. We start by introducing these two approaches. 1.1 Background: Spreadsheets and End-User Programming The spreadsheet is the first \killer app" of the personal computer era, starting in 1979 with Dan Bricklin and Bob Frankston's VisiCalc for the Apple II [15]. The primary interface of a spreadsheet|then and now, four decades later|is the grid, a two-dimensional array of cells. Each cell may hold a literal data value, or a formula that computes a data value (and may depend on the data in other cells, which may themselves be computed by formulas).
    [Show full text]
  • Admb Package
    Using AD Model Builder and R together: getting started with the R2admb package Ben Bolker March 9, 2020 1 Introduction AD Model Builder (ADMB: http://admb-project.org) is a standalone program, developed by Dave Fournier continuously since the 1980s and re- leased as an open source project in 2007, that takes as input an objective function (typically a negative log-likelihood function) and outputs the co- efficients that minimize the objective function, along with various auxiliary information. AD Model Builder uses automatic differentiation (that's what \AD" stands for), a powerful algorithm for computing the derivatives of a specified objective function efficiently and without the typical errors due to finite differencing. Because of this algorithm, and because the objective function is compiled into machine code before optimization, ADMB can solve large, difficult likelihood problems efficiently. ADMB also has the capability to fit random-effects models (typically via Laplace approximation). To the average R user, however, ADMB represents a challenge. The first (unavoidable) challenge is that the objective function needs to be written in a superset of C++; the second is learning the particular sequence of steps that need to be followed in order to output data in a suitable format for ADMB; compile and run the ADMB model; and read the data into R for analysis. The R2admb package aims to eliminate the second challenge by automating the R{ADMB interface as much as possible. 2 Installation The R2admb package can be installed in R in the standard way (with install.packages() or via a Packages menu, depending on your platform.
    [Show full text]
  • Linux: Come E Perchх
    ÄÒÙÜ Ô ©2007 mcz 12 luglio 2008 ½º I 1. Indice II ½º Á ¾º ¿º ÈÖÞÓÒ ½ º È ÄÒÙÜ ¿ º ÔÔÖÓÓÒÑÒØÓ º ÖÒÞ ×Ó×ØÒÞÐ ÏÒÓÛ× ¾½ º ÄÒÙÜ ÕÙÐ ×ØÖÙÞÓÒ ¾ º ÄÒÙÜ ÀÖÛÖ ×ÙÔÔ ÓÖØØÓ ¾ º È Ð ÖÒÞ ØÖ ÖÓ ÓØ Ù×Ö ¿½ ½¼º ÄÒÙÜ × Ò×ØÐÐ ¿¿ ½½º ÓÑ × Ò×ØÐÐÒÓ ÔÖÓÖÑÑ ¿ ½¾º ÒÓÒ ØÖÓÚÓ ÒÐ ×ØÓ ÐÐ ×ØÖÙÞÓÒ ¿ ½¿º Ó׳ ÙÒÓ ¿ ½º ÓÑ × Ð ××ØÑ ½º ÓÑ Ð ½º Ð× Ñ ½º Ð Ñ ØÐ ¿ ½º ÐÓ ½º ÓÑ × Ò×ØÐÐ Ð ×ØÑÔÒØ ¾¼º ÓÑ ÐØØÖ¸ Ø×Ø ÐÖ III Indice ¾½º ÓÑ ÚÖ Ð ØÐÚ×ÓÒ ¿ 21.1. Televisioneanalogica . 63 21.2. Televisione digitale (terrestre o satellitare) . ....... 64 ¾¾º ÐÑØ ¾¿º Ä 23.1. Fotoritocco ............................. 67 23.2. Grafica3D.............................. 67 23.3. Disegnovettoriale-CAD . 69 23.4.Filtricoloreecalibrazionecolori . .. 69 ¾º ×ÖÚ Ð ½ 24.1.Vari.................................. 72 24.2. Navigazionedirectoriesefiles . 73 24.3. CopiaCD .............................. 74 24.4. Editaretesto............................. 74 24.5.RPM ................................. 75 ¾º ×ÑÔ Ô ´ËÐе 25.1.Montareundiscoounapenna . 77 25.2. Trovareunfilenelsistema . 79 25.3.Vedereilcontenutodiunfile . 79 25.4.Alias ................................. 80 ¾º × ÚÓÐ×× ÔÖÓÖÑÑÖ ½ ¾º ÖÓÛ×Ö¸ ÑÐ ººº ¿ ¾º ÖÛÐРгÒØÚÖÙ× Ð ÑØØÑÓ ¾º ÄÒÙÜ ½ ¿¼º ÓÑ ØÖÓÚÖ ÙØÓ ÖÖÑÒØ ¿ ¿½º Ð Ø×ØÙÐ Ô Ö Ð ×ØÓÔ ÄÒÙÜ ¿¾º ´ÃµÍÙÒØÙ¸ ÙÒ ×ØÖÙÞÓÒ ÑÓÐØÓ ÑØ ¿¿º ËÙÜ ÙÒ³ÓØØÑ ×ØÖÙÞÓÒ ÄÒÙÜ ½¼½ ¿º Á Ó Ò ÄÒÙÜ ½¼ ¿º ÃÓÒÕÙÖÓÖ¸ ÕÙ×ØÓ ½¼ ¿º ÃÓÒÕÙÖÓÖ¸ Ñ ØÒØÓ Ô Ö ½½¿ 36.1.Unaprimaocchiata . .114 36.2.ImenudiKonqueror . .115 36.3.Configurazione . .116 IV Indice 36.4.Alcuniesempidiviste . 116 36.5.Iservizidimenu(ServiceMenu) . 119 ¿º ÃÓÒÕÙÖÓÖ Ø ½¾¿ ¿º à ÙÒ ÖÖÒØ ½¾ ¿º à ÙÒ ÐÙ×ÓÒ ½¿½ ¼º ÓÒÖÓÒØÓ Ò×ØÐÐÞÓÒ ÏÒÓÛ×È ÃÍÙÒØÙ º½¼ ½¿¿ 40.1.
    [Show full text]
  • Automated Likelihood Based Inference for Stochastic Volatility Models H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Knowledge at Singapore Management University Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Economics School of Economics 11-2009 Automated Likelihood Based Inference for Stochastic Volatility Models H. Skaug Jun YU Singapore Management University, [email protected] Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research Part of the Econometrics Commons Citation Skaug, H. and YU, Jun. Automated Likelihood Based Inference for Stochastic Volatility Models. (2009). 1-28. Research Collection School Of Economics. Available at: https://ink.library.smu.edu.sg/soe_research/1151 This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email [email protected]. Automated Likelihood Based Inference for Stochastic Volatility Models Hans J. SKAUG , Jun YU November 2009 Paper No. 15-2009 ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF THE SCHOOL OF ECONOMICS, SMU Automated Likelihood Based Inference for Stochastic Volatility Models¤ Hans J. Skaug,y Jun Yuz October 7, 2008 Abstract: In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that imple- mentation of the Laplace approximation is greatly simpli¯ed by the use of a numerical technique known as automatic di®erentiation (AD).
    [Show full text]