(Microsoft Powerpoint

Total Page:16

File Type:pdf, Size:1020Kb

(Microsoft Powerpoint Acil T ıp’ta İstatistik Sunum Plan ı IV. Acil Tıp Asistan Sempozyumu 19-21 Haziran 2009 Biyoistatistik nedir Sa ğlık alan ında biyoistatistik Acil T ıp’ta biyoistatistik Meral Leman Almac ıoğlu İstatistik yaz ılım programlar ı Uluda ğ Üniversitesi T ıp Fakültesi Acil T ıp AD Bursa Biyoistatistik Nedir Biyoistatistik Niçin Gereklidir 1. Biyolojik, laboratuar ve klinik verilerdeki yayg ınl ık ı ğ ı Biyoistatistik; t p ve sa l k bilimleri 2. Verilerin anla şı lmas ı alanlar ında veri toplanmas ı, özetleme, 3. Yorumlanmas ı analiz ve de ğerlendirmede istatistiksel 4. Tıp literatürünün kriti ğinin yap ılmas ı yöntemleri kullanan bilim dal ı 5. Ara ştırmalar ın planlanmas ı, gerçekle ştirilmesi, analiz ve yorumlanmas ı Biyoistatistiksel teknikler kullan ılmadan gerçekle ştirilen ara ştırmalar bilimsel ara ştırmalar de ğildir Acil’de İstatistik Sa ğlık istatistikleri sa ğlık çal ış anlar ının verdi ği bilgilerden derlenmekte Acil Servis’in hasta yo ğunlu ğunun y ıl-ay-gün-saat baz ında de ğerlendirilmesi bu veriler bir ülkede sa ğlık hizmetlerinin planlanmas ı Çal ış ma saatlerinin ve çal ış mas ı gereken ki şi say ısının ve de ğerlendirmesinde kullan ılmakta planlanmas ı Gerekli malzeme, yatak say ısı, ilaç vb. planlanmas ı Verilen hizmetin kalitesinin ölçülmesi İyi bir biyoistatistik eğitim alan sa ğlık personelinin o Eğitimin kalitesinin ölçülmesi ülkenin sa ğlık informasyon sistemlerine güvenilir Pandemi ve epidemilerin tespiti katk ılarda bulunmas ı beklenir Yeni çal ış malar, tezler … İstatistik Yaz ılım Programlar ı İİİstatistiksel Yaz ııılııımlar Excel Public domain Dataplot · Epi Info · CSPro · X-12-ARIMA SPSS ADMB · DAP · gretl · JAGS · JMulTi · OpenBUGS · PSPP · R · Simfit · XLispStat · Open source Yxilon Minitab Freeware BV4.1 · XploRe · WinBUGS SAS S-Plus Data Desk · GAUSS · GraphPad InStat · GraphPad Prism · JMP · MATLAB · Cross-platform Statistica Mathematica · OxMetrics · RATS · SAS · SPSS · Stata · SUDAAN · S-PLUS BMDP · EViews · GenStat · MedCalc · Minitab · NCSS · SigmaStat · STATISTICA · Matlab Windows only StatXact · SYSTAT · The Unscrambler · UNISTAT Excel add-ons Analyse-it · SPC XL · UNISTAT for Excel · Xlfit Microsoft Excel Bir hesap tablosu (spreadsheet) program ı Verileri tablo ya da listeler halinde tutma Bu verilerle hesaplama ve analizleri yapma imkan ı "xls " uzant ılı dosyalar Excel Çal ış ma Sayfas ı Çal ışışış ma Kitab ııı: Excel'de yarat ılm ış her dosya bir çal ış ma kitab ı “Hücre” Çal ışışış ma Sayfas ııı “Formül Çubu ğu” “Hücre Adresi” Sol tarafta "Sat ır Numaralar ı" 1, 2, 3... biçiminde; "Sütun Ba şlıklar ı" ise A, B, C... biçimindedir Çal ış ma sayfalar ının her birinde 16384 sat ır ve 256 sütun var Otomatik Doldurma Otomatik Doldurma Excel say ı, tarih veya zaman ı seri olarak 1, 2, 3….. ya da 2, 4, 6….gibi artan bir liste geni şletebilir Formül Haz ırlama ş önce "=" i areti Formüller kopyalanabilir A1 + B1 için C1 hücresinde =A1+B1 Excel SPSS (Statistical Package for the Social Sciences) Formüller 1968’de N. Nie, C. Hull ve D. Bent Tüm İş levler Veriden karar amaçlı bilgi elde etmeyi hedefleyerek İstatistiksel istatisti ği kullanmay ı sa ğlayacak bir yaz ılım İlk çal ış malar Stanford Üniversitesinde Hızl ı bir şekilde Amerika’da di ğer üniversiteler... Chicago üniversitesi bünyesinde konumlanm ış küçük ölçekli bir şirket SPSS fiyatland ırma, ürün sevkiyat ı ve di ğer ticari 1970’li y ıllarda NASA SPSS yaz ılımını uzay unsurlarda kullan ılmaya ba şland ı meki ğinin parçalar ının ortalama bozulma zaman ını McGraw-Hill 1970 y ılında ilk SPSS kullan ım saptamada kılavuzunu yay ınlad ı Orman Bakanl ığı ise yaralanmaya neden olan 1975 y ılında SPSS şirketle şti; kamuda ve özel kazalar ın analizinde sektörde h ızla yay ılmaya ba şlad ı 1980’li y ıllarda SPSS’in ki şisel bilgisayarda kullan ılan ilk mainframe sürümü 1992 y ılında ise Microsoft Windows üzerinde çal ış an ilk istatistiksel analiz yaz ılım SPSS ne kazand ırır SPSS Inc. öngörüsel analiz yaz ılımlar ı ve çözümleri Veri analizi alan ında dünya lideri Mevcut durum de ğerlendirme ve gelece ği tahmin 1968’den beri SPSS 250,000 den fazla müşteri etme 60 ülke Öngörüsel analiz; kurulu şlara geçmi ş davran ış lardan 1,200’ün üzerinde çal ış an anlam çıkarma ve aksiyon alma yetene ği sa ğlar Günümüzde en son sürümü versiyon 17 SPSS Windows Mac OS X UNIX Sosyal Bilimler Pazar ara ştırmalar ı Sa ğlık a ştırmalar ı Uzant ısı “.sav” meral.sav İlk Ekran İlk kez girerken Type in data İkinci bir pencerede output dosyas ı Data Editor Penceresi SPSS'in Data Editor'ü; datalar ınızın yerle şece ği alan Her sütun bir de ğişkeni (variable) temsil eder De ğişken Nedir Ölçüm yap ılan gruptaki farkl ı bireyler için farkl ı de ğerler al ır SPSS'de de ğişkenin ne tür bir veriyi bar ınd ıraca ğı önemlidir (Say ısal de ğer, yaz ı, tarih bilgisi, vs...) Ba ğı ms ız De ğişken (Independent Variable): ya ş, cinsiyet, vs... De ğişkenlerin tipini, onlar ı tan ımlarken belirlemeniz gerekir Ba ğı ml ı De ğişken (Dependent Variable): Ba ğı ms ız de ğişkenin de ğerini de ğiştirerek elde edebilinen de ğişkenler De ğişken Tan ımlama Type...: Data menüsünün ilk seçene ği Labels...: Define Vairable (De ğişken Tan ımlama) Missing Values...: Column Format...: Orjinal hali 8 karakter ve sa ğ taraf Variable Name: Bu kutucu ğa Measurement: en fazla 8 karakter olacak şekilde de ğişkeninizin ismini girebilirsiniz Type... (De ğişken Tipi) Label... (De ğer Etiketleri) De ğişkenin tipini belirlemek için De ğerleri temsil eden etiketler Cinsiyet de ğişkeni için tip number (numara) 1 erkek 2 kad ın için kullan ılabilir Erkekler mi yoksa kad ınlar m ı 1 etiket (label) verebiliriz Missing Values... (Geçersiz De ğerler) Baz ı bireyler için veri elde edilemezse hücre bo ş kalacakt ır Bo ş de ğerler SPSS için Missing Values (Geçersiz De ğer) Hangi de ğerlerin geçersiz olaca ğı nı bu menüden belirleyebilirsiniz No Missing Values Discrete Missing Values: Belirtti ğiniz de ğerler geçersiz Range of Missing Values: Belirledi ğiniz aral ıktaki de ğerler geçersiz Range plus one discrete missing value: Belirledi ğiniz aral ıktaki ve belirtilen de ğer geçersiz Measurement Veri Girme Rakam verileri için (ya ş, gelir,vs..) Scale ; De ğişkenlerinizi tan ımlad ıktan sonra, veri girebilirsiniz Rakam ve metin içeriyorsa (karde ş say ısı:"1","2","3”,"4 Tek yapman ız gereken girmek istedi ğiniz hücreyi seçmek ve ve üzeri" vs..) Ordinal ; klavyeden de ğeri girip Enter tu şuna basmak Metin içeriyorsa (S ınıflar: A, B, C, D, vs...) Nominal Girdi ğiniz de ğer De ğişkeni seçtikten sonra uygun tipi de (Type) belirlemeniz de ğişkeninizin tipine uymuyorsa gerekir de ğer hücreye yaz ılmaz Nominal String De ğişkenleri Kullanarak Yeni De ğişken Olu şturma Target Variable kutusuna yeni de ğişkenin ad ı Elinizdeki verileri kullanarak yeni de ğişken yaratabilirsiniz Örne ğin, elinizde 3 ayr ı not varsa Numeric Expression kutusuna formül bunlar ın toplam ını 4. bir de ğişken olarak olu şturabilirsiniz 6 quizin toplam ı total Transform/Compute Yeni de ğişkeniniz içerisindeki hesaplanm ış de ğerlerle bo ş olan ilk sütuna yerle şecektir Basit İstatistikler Bulma Girdi ğiniz veriler hakk ında basit istatistikler Summarize / Descriptives ortalama(mean) ortanca(median) tepe de ğeri(mode) veri aral ığı (range) standart sapma(standard deviation) varyans(varience) ortalaman ın standart hatas ı (standard error of the mean) çarp ıkl ık(skewness) bas ıkl ık(kurtosis) Bu de ğerler ile verilerinizin genel da ğı lımı hakk ında bilgi edinebilirsiniz Descriptives... İstatistiklerini bulmak istedi ğiniz de ğişkenleri seçin ve sa ğ taraftaki Variables listesine geçirin Options ile istatistikleri seçin Ok istatistikler Output penceresinde (ayr ı bir pencere) Output View (Çıkt ı sayfas ı) ÖZET İstatistik anlamlar çıkarmak için hayat ın her alan ında SPSS'de tüm hesaplamalar ın sonucu bir çıkt ı sayfas ına (Output View) gelir Veriler ve output ayr ı kaydedilir Tez, çal ış ma... SPSS en yayg ın istatistik program ı Print edilece ği zaman sadece ortadaki bilgiler yaz ılır TE ŞŞŞEKKÜRLER Kaynak Biyoistatistik Ders Notlar ı MICROSOFT EXCEL Kullan ım K ılavuzu SPSS Kaliteofisi Yay ınlar ı No: 10; Eylül 2005.
Recommended publications
  • Seminar to Advanced Macroeconomics
    Seminar to Advanced Macroeconomics Jaromír Baxa IES FSV UK, WS 2010/2011 Introduction Aim of the seminar: Overview over empirical methods used in macro to make your horizons wider. Easy applications of econometrics to macroeconomic topics discussed in the lectures Using econometric software Talking about your Project Tasks and discussion about Problem Sets Why Empirical Seminar? The Role of Empirical Work in Macro Correspondence between the theory and real data Forecasting and economic policy Finding empirical evidence to build new theories Fundamental ucertainty in econometrics: choice of variables => Robustness over different datasets, over different additional variables... => We should always keep in mind this uncertainty and ask: Are my results good because of the datasets? Methods Descriptive statistics, tests... Some nonparametric methods: tests, density estimates Linear Regression Panel data regression Principal Components method Time series: seasonal adjustment, trends... Dynamic models (very brief introduction) ... Software You can't do empirical work without it. There are many software packages for econometrics: Commercial: TSP, SAS, Stata, E-views, PC-Give, Gauss, S-Plus and many others Freeware/Open Source/Shareware without limitations: Gretl, R-Project, Ox See http://freestatistics.altervista.org/stat.php for comprehensive list. Use whatever you want to And bring your laptop with (if you can) Gretl Available in Room 016: TSP (GiweWin GUI), SPSS for Windows 10.0, R (with necessary libraries), Gretl, JMulti Gretl: http://gretl.sourceforge.net, GNU GPL licence, crossplatform. Have a look into documentation: manual as an textbook available. Don't forget to install seasonal adjustment methods, we will use them in a couple of weeks.
    [Show full text]
  • ICT in the Kosovo National Statistical System - Baseline Review and Recommendations for Development
    UNDP Kosovo UNKT Technical assistance to the IT department of the Kosovo Agency of Statistics (KAS) Technical analysis of information technology in the national statistical system ICT in the Kosovo National Statistical System - Baseline review and Recommendations for development April 2013 by Arij Dekker, Consultant in statistical data processing and management arijdekker@cs.com ICT in the Kosovo National Statistical System - Baseline review and Recommendations for development 1 Contents List of Acronyms ...................................................................................................................................... 3 Executive Summary ................................................................................................................................. 5 Chapter 1. Introduction ..................................................................................................................... 7 Chapter 2. Methods of information gathering .................................................................................... 9 2.1 Description of interview partners and question clusters ........................................................... 9 2.2 Other information sources ..................................................................................................... 12 Chapter 3. The present state of ICT in the Kosovo national statistical system ................................... 14 3.1 Summary of information gathered from the interviews .........................................................
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Name Ankit Patras Address 111 Agricultural and Biotechnology Building, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville TN 37209 Phone 615-963-6007, 615-963-6019/6018 Email apatras@tnstate.edu, ankit.patras@gmail.com EDUCATION 2005- 2009: Ph.D. Biosystems Engineering: School of Biosystems Engineering, College of Engineering & Architecture, Institute of Food and Health, University College Dublin, Ireland. 2005- 2006: Post-graduate certificate (Statistics & Computing): Department of Statistics and Actuarial Science, School of Mathematical Sciences, University College Dublin, Ireland 2003- 2004: Master of Science (Bioprocess Technology): UCD School of Biosystems Engineering, College of Engineering & Architecture, University College Dublin, Ireland 1998- 2002: Bachelor of Technology (Agricultural and Food Engineering): Allahabad Agriculture Institute, India ACADEMIC POSITIONS Assistant Professor, Food Biosciences: Department of Agricultural and Environmental Research, College of Agriculture, Human and Natural Sciences, Tennessee State University, Nashville, Tennessee 2nd Jan, 2014 - Present • Leading a team of scientist and graduate students in developing a world-class food research centre addressing current issues in human health, food safety specially virus, bacterial and mycotoxins contamination • Developing a world-class research program on improving safety of foods and pharmaceuticals • Develop cutting edge technologies (i.e. optical technologies, bioplasma, power Ultrasound,
    [Show full text]
  • On New Data Sources for the Production of Official Statistics
    On new data sources for the production of official statistics David Salgado1,2 and Bogdan Oancea3 1Dept. Methodology and Development of Statistical Production, Statistics Spain (INE), Spain 2Dept. Statistics and Operations Research, Complutense University of Madrid, Spain 3Dept. Business Administration, University of Bucharest, Romania February 7, 2020 Abstract In the past years we have witnessed the rise of new data sources for the potential production of official statistics, which, by and large, can be classified as survey, administrative, and digital data. Apart from the differences in their generation and collection, we claim that their lack of statistical metadata, their economic value, and their lack of ownership by data holders pose several entangled challenges lurking the incorporation of new data into the routinely production of official statistics. We argue that every challenge must be duly overcome in the international community to bring new statistical products based on these sources. These challenges can be naturally classified into different entangled issues regarding access to data, statistical methodology, quality, information technologies, and management. We identify the most relevant to be necessarily tackled before new data sources can be definitively considered fully incorporated into the production of official statistics. Contents 1 Introduction 2 2 Data: survey, administrative, digital 3 2.1 Somedefinitions ..................................... .... 3 2.2 Statisticalmetadata ................................ ....... 4 2.3 Economicvalue.....................................
    [Show full text]
  • Porta-SIMD: an Optimally Portable SIMD Programming Language Duke CS-1990-12 UNC CS TR90-021 May 1990
    Porta-SIMD: An Optimally Portable SIMD Programming Language Duke CS-1990-12 UNC CS TR90-021 May 1990 Russ Tuck Duke University Deparment of Computer Science Durham, NC 27706 The University of North Carolina at Chapel Hill Department of Computer Science CB#3175, Sitterson Hall Chapel Hill, NC 27599-3175 Text (without appendix) of a Ph.D. dissertation submitted to Duke University. The research was performed at UNC. @ 1990 Russell R. Tuck, III UNC is an Equal Opportunity/Atlirmative Action Institution. PORTA-SIMD: AN OPTIMALLY PORTABLE SIMD PROGRAMMING LANGUAGE by Russell Raymond Tuck, III Department of Computer Science Duke University Dissertation submitte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 1990 Copyright © 1990 by Russell Raymond Tuck, III All rights reserved Abstract Existing programming languages contain architectural assumptions which limit their porta­ bility. I submit optimal portability, a new concept which solves this language design problem. Optimal portability makes it possible to design languages which are portable across vari­ ous sets of diverse architectures. SIMD (Single-Instruction stream, Multiple-Data stream) computers represent an important and very diverse set of architectures for which to demon­ strate optimal portability. Porta-SIMD (pronounced "porta.-simm'd") is the first optimally portable language for SIMD computers. It was designed and implemented to demonstrate that optimal portability is a useful and achievable standard for language design. An optimally portable language allows each program to specify the architectural features it requires. The language then enables the compiled program to exploit exactly those fea.­ tures, and to run on all architectures that provide them.
    [Show full text]
  • Receiver Operating Characteristic (ROC) Methods in Diagnostic Imaging
    8/2/2017 Receiver Operating Characteristic (ROC) Methods in Diagnostic Imaging Elizabeth A. Krupinski, PhD Department Radiology & Imaging Sciences Emory University Bit of History • Developed early 1950s based on principles SDT for eval radar operators detecting enemy aircraft & missiles • Contributions from engineering, psychology & mathematics • Lee Lusted introduced medicine 1960s with significant effort on gaining better understanding decision-making • Result of radiology studies after WWII to determine which of 4 radiographic & fluoroscopic techniques better for TB screening • Goal = single imaging technique outperform others • Found intra & inter-observer variation so high impossible determine • Necessary to build systems generate better images so radiologists’ performance could improve (i.e., reduce observer variability) & develop methods evaluate these new systems & assess impact on observer performance Basics • ROC traditionally binary decision task – target/signal (e.g., lesion, disease, missile) present versus target/signal absent, or in case classification rather than detection target/signal belongs to class 1 (e.g., cancer, enemy) or class 2 (e.g., not cancer, friend) • ROC analysis these two conditions must be mutually exclusive 1 8/2/2017 2 x 2 Matrix Decision = Target Decision = Target Present Absent Truth = Target Present True Positive (TP) False Negative (FN) Truth = Target Absent False Positive (FP) True Negative (TN) Common Performance Metrics • Sensitivity = TP/(TP + FN) • Specificity = TN/(TN + FP) • Accuracy = (TP
    [Show full text]
  • Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova
    Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova To cite this version: Polina Lemenkova. Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology. International Journal of Environmental Trends (IJENT), 2019, 3 (1), pp.39 - 59. hal-02163671 HAL Id: hal-02163671 https://hal.archives-ouvertes.fr/hal-02163671 Submitted on 3 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Environmental Trends (IJENT) 2019: 3 (1),39-59 ISSN: 2602-4160 Research Article REGRESSION MODELS BY GRETL AND R STATISTICAL PACKAGES FOR DATA ANALYSIS IN MARINE GEOLOGY Polina Lemenkova 1* 1 ORCID ID number: 0000-0002-5759-1089. Ocean University of China, College of Marine Geo-sciences. 238 Songling Rd., 266100, Qingdao, Shandong, P. R. C. Tel.: +86-1768-554-1605. Abstract Received 3 May 2018 Gretl and R statistical libraries enables to perform data analysis using various algorithms, modules and functions. The case study of this research consists in geospatial analysis of Accepted the Mariana Trench, a hadal trench located in the Pacific Ocean.
    [Show full text]
  • An Introduction to the SAS System
    An Introduction to the SAS System Dileep K. Panda Directorate of Water Management Bhubaneswar-751023 dileeppanda@rediffmail.com Introduction The SAS – Statistical Analysis System (erstwhile expansion of SAS) - is the one of the most widely used Statistical Software package by the academic circles and Industry. The SAS software was developed in late 1960s at North Carolina State University and in 1976 SAS Institute was formed. The SAS system is a collection of products, available from the SAS Institute in North Carolina. SAS software is a combination of a statistical package, a data – base management system, and a high level programming language. The SAS is an integrated system of software solutions that performs the following tasks: Data entry, retrieval, and management Report writing and graphics design Statistical and mathematical analysis Business forecasting and decision support Operations research and project management Applications development At the core of the SAS System is the Base SAS software. The Base SAS software includes a fourth-generation programming language and ready-to-use programs called procedures. These integrated procedures handle data manipulation, information storage and retrieval, statistical analysis, and report writing. Additional components offer capabilities for data entry, retrieval, and management; report writing and graphics; statistical and mathematical analysis; business planning, forecasting, and decision support; operations research and project management; quality improvement; and applications development. In general, the Base SAS software has the following capabilities A data management facility A programming language Data analysis and reporting utilities Learning to use Base SAS enables you to work with these features of SAS. It also prepares you to learn other SAS products, because all SAS products follow the same basic rules.
    [Show full text]
  • 8 the Software Jmulti
    P1: IML CB698-Driver CB698-LUTKEPOHI CB698-LUTKEPOHI-Sample.cls August 25, 2006 17:44 8 The Software JMulTi Markus Kr¨atzig 8.1 Introduction to JMulTi 8.1.1 Software Concept This chapter gives a general overview of the software by which the examples in this book can be reproduced; it is freely available via the Internet.1 The information given here covers general issues and concepts of JMulTi. Detailed descriptions on how to use certain methods in the program are left to the help system installed with the software. JMulTi is an interactive JAVA application designed for the specific needs of time series analysis. It does not compute the results of the statistical calcu- lations itself but delegates this part to a computational engine via a communi- cations layer. The range of its own computing functions is limited and is only meant to support data transformations to provide input for the various statistical routines. Like other software packages, JMulTi contains graphical user interface (GUI) components that simplify tasks common to empirical analysis – espe- cially reading in data, transforming variables, creating new variables, editing data, and saving data sets. Most of its functions are accessible by simple mouse interaction. Originally the software was designed as an easy-to-use GUI for complex and difficult-to-use econometric procedures written in GAUSS that were not available in other packages. Because this concept has proved to be quite fruit- ful, JMulTi has now evolved into a comprehensive modeling environment for multiple time series analysis. The underlying general functionality has been bundled in the software framework JStatCom, which is designed as a ready-made platform for the creation of various statistical applications by developers.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • Pnw 2020 Strunk001.Pdf
    Remote Sensing of Environment 237 (2020) 111535 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Evaluation of pushbroom DAP relative to frame camera DAP and lidar for forest modeling T ∗ Jacob L. Strunka, , Peter J. Gouldb, Petteri Packalenc, Demetrios Gatziolisd, Danuta Greblowskae, Caleb Makif, Robert J. McGaugheyg a USDA Forest Service Pacific Northwest Research Station, 3625 93rd Ave SW, Olympia, WA, 98512, USA b Washington State Department of Natural Resources, PO Box 47000, 1111 Washington Street, SE, Olympia, WA, 98504-7000, USA c School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland d USDA Forest Service Pacific Northwest Research Station, 620 Southwest Main, Suite 502, Portland, OR, 97205, USA e GeoTerra Inc., 60 McKinley St, Eugene, OR, 97402, USA f Washington State Department of Natural Resources, PO Box 47000, 1111 Washington Street SE, Olympia, WA, 98504-7000, USA g USDA Forest Service Pacific Northwest Research Station, University of Washington, PO Box 352100, Seattle, WA, 98195-2100, USA ARTICLE INFO ABSTRACT Keywords: There is growing interest in using Digital Aerial Photogrammetry (DAP) for forestry applications. However, the Lidar performance of pushbroom DAP relative to frame-based DAP and airborne lidar is not well documented. Interest Structure from motion in DAP stems largely from its low cost relative to lidar. Studies have demonstrated that frame-based DAP Photogrammetry generally performs slightly poorer than lidar, but still provides good value due to its reduced cost. In the USA Forestry pushbroom imagery can be dramatically less expensive than frame-camera imagery in part because of a na- DAP tionwide collection program.
    [Show full text]
  • Full-Text (PDF)
    Vol. 13(6), pp. 153-162, June 2019 DOI: 10.5897/AJPS2019.1785 Article Number: E69234960993 ISSN 1996-0824 Copyright © 2019 Author(s) retain the copyright of this article African Journal of Plant Science http://www.academicjournals.org/AJPS Full Length Research Paper Adaptability and yield stability of bread wheat (Triticum aestivum) varieties studied using GGE-biplot analysis in the highland environments of South-western Ethiopia Leta Tulu1* and Addishiwot Wondimu2 1National Agricultural Biotechnology Research Centre, P. O. Box 249, Holeta, Ethiopia. 2Department of Plant Sciences, College of Agriculture and Veterinary Science, Ambo University. P. O. Box 19, Ambo, Ethiopia. Received 13 February, 2019; Accepted 11 April, 2019 The objectives of this study were to evaluate released Ethiopian bread wheat varieties for yield stability using the GGE biplot method and identify well adapted and high-yielding genotypes for the highland environments of South-western Ethiopia. Twenty five varieties were evaluated in a randomized complete block design with three replications at Dedo and Gomma during the main cropping season of 2016 and at Dedo, Bedelle, Gomma and Manna during the main cropping season of 2017, generating a total of six environments in location-by-year combinations. Combined analyses of variance for grain yield indicated highly significant (p<0.001) mean squares due to environments, genotypes and genotype-by- environment interaction. Yield data were also analyzed using the GGE (that is, G, genotype + GEI, genotype-by-environment interaction) biplot method. Environment explained 73.2% of the total sum of squares, and genotype and genotype X environment interaction explained 7.16 and 15.8%, correspondingly.
    [Show full text]