Strengthening Federal Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Strengthening Federal Statistics 18. STRENGTHENING FEDERAL STATISTICS The Federal Statistical System (FSS) has reliably and consistent with system-wide priorities; and develop and impartially informed the nation about its population, con- oversee the implementation of Governmentwide statis- dition, and progress since its founding, beginning with tical policies, principles, guidelines, and standards. The the first constitutionally-mandated Census in 1790. The Chief Statistician chairs the ICSP, made up of the heads mission of the FSS is to collect and transform data into of the thirteen PSAs and one rotating member from a non- useful, objective information; making it readily and eq- PSA agency that conducts significant statistical activity, uitably available to government, private businesses, currently the National Center for Veterans Analysis and and the public. There are thirteen Principal Statistical Statistics. The ICSP provides strategic leadership for Agencies (PSAs—see Table 18–1) and almost 100 non- the FSS on system-wide priorities such as improving PSA statistical units spread across the Executive Branch researcher access to confidential data while protecting that generate statistics on such topics as the economy, privacy, increasing response rates on surveys while eas- workforce, energy, agriculture, foreign trade, education, ing the cost and burden on respondents, and acquiring housing, crime, transportation, and health. The PSAs and maintaining a highly skilled workforce. CIPSEA pro- are continuously developing new methods for collecting vides a common statutory framework for the collection, and combining data from multiple sources in order to ex- handling, and dissemination of confidential data and al- pand and improve the quality and timeliness of statistical lows agencies to assure respondents that their data will evidence needed to make important decisions in today’s only be used for statistical and research purposes. information-rich society. Agencies are increasing their The recently enacted Foundations for Evidence- collaborative efforts as demands grow for more high qual- Based Policymaking Act of 2018 (Evidence Act) further ity, reliable information to drive mission and meet the emphasizes the importance of coordination of the evi- needs of the public. dence-building functions of the Federal Government, and Coordination of the Federal Statistical System includes several provisions to improve capacity and co- ordination at not only the thirteen principal statistical Although the Principal Statistical Agencies are spread agencies, but also at the numerous other offices that con- across government, they share common principles and duct significant statistical activities in the performance of practices and operate as a closely-knit network. Many of their regulatory, enforcement, program delivery, or scien- the data products and publications generated by the FSS tific missions. The Evidence Act requires the head of each are the result of collaborative efforts involving multiple CFO Act agency to designate a statistical official to advise agencies. Through conferences, joint training sessions, on statistical policy, techniques, and procedures, and spec- and informal engagements, agencies share best practices ifies that these officials will serve as members of the ICSP, and innovations in topics ranging from secure storage of providing a forum for broader coordination across the confidential data to natural language processing of writ- FSS. The Act also requires each agency to produce an as- ten responses. Because of its interconnected nature, the sessment of the coverage, quality, methods, effectiveness, state of the system as a whole depends on the health of and independence of the statistics, evaluation, research, the individual member agencies. Changes to programs at and analysis efforts of the agency as part of their strategic one agency frequently impact many other agencies in the plan, providing an opportunity for increased intra-agency system. coordination. The Act calls for the Chief Statistician to Recognizing the importance of coordination and the in- chair a new Advisory Committee on Data for Evidence terdependent nature of the statistical system, Congress Building to make recommendations on how to facilitate used the Paperwork Reduction Act of 1995 (PRA) and data sharing, enable data linkage, and develop privacy the Confidential Information Protection and Statistical enhancing techniques to coordinate Federal data use for Efficiency Act of 2002 (CIPSEA) to create three important evidence building across agencies. Several provisions tools: the position of the Chief Statistician of the United in the Evidence Act are designed to promote intra- and States at the Office of Management and Budget, the inter-agency sharing of government data for statistical Interagency Council on Statistical Policy (ICSP), and a purposes, including an update to CIPSEA that creates a consistent framework for protecting confidential respon- presumption of accessibility of government data assets dent information. The PRA directs the Chief Statistician for statistical agencies and units, calls for the use of dis- to coordinate the activities of the FSS to ensure its closure limitation techniques to expand the availability of efficiency and effectiveness, integrity, objectivity, impar- less-restricted versions of confidential data sets, and the tiality, utility and confidentiality of information collected requirement of a standard application process for secure for statistical purposes; ensure that budget proposals are researcher access to CIPSEA-protected data. 249 250 ANALYTICAL PERSPECTIVES Focus on the Value of Collaborative by linking that data with other administrative or statis- Evidence-Building tical data to create new insights. In turn, the statistical agencies rely on the data collected or generated by pro- In addition to the implementation activities of the gram implementation, regulatory, and other agencies in Evidence Act, several exciting interagency initiatives are order to reduce burden on the public and increase the underway that promise to strengthen collaboration and accuracy, timeliness, and granularity of their statistical cooperation across government: products. The Evidence Act promotes this relationship in The President’s Management Agenda, released its new presumption that CIPSEA agencies, where em- in October 2018, includes a Cross-Agency Priority goal ployees take an oath to protect data confidentiality and on Leveraging Data as a Strategic Asset. This goal is face severe penalties for any violations, should be allowed operationalized as a Federal Data Strategy designed to access to program data unless specifically prohibited by coordinate and integrate the Federal Government’s ap- statute. Some recent examples of interagency cooperation proach to using data to deliver on mission, serve the taking on real world problem-solving follow. public, and steward resources while respecting privacy Post-prison employment. Research suggests that and confidentiality. The Data Strategy is co-led by the employment may reduce the likelihood of recidivism Chief Statistician and many of the statistical agencies are following an offender’s release from a correctional in- providing staff, expertise, and best practices to the effort. stitution, yet the nation lacks detailed information on The Administration’s Reform Plan and post-prison employment activities of offenders. At the Reorganization Recommendations include a pro- request of Congress, the Bureau of Justice Statistics part- posal to relocate the Bureau of Labor Statistics within nered with data linkage experts at the U.S. Census Bureau the Commerce Department alongside the Bureau of the to combine state prison data with data on employment Census and the Bureau of Economic Analysis. Aligning and income to produce the first national-level estimates these three agencies more closely will not only increase for post-prison employment, job stability, and time from cost-effectiveness and reduce respondent burden, it will release to employment. improve data quality and result in the creation of much Veterans food security. According to recent research, needed new information products that help our under- veterans overall experience lower rates of food insecu- standing of the nation’s economy. rity than the general population. However veterans of The Federal Committee on Statistical the wars in Iraq and Afghanistan experience greater Methodology and the Interagency Council on food insecurity and lack of access to sufficient food for a Statistical Policy are working to create a unified healthful lifestyle compared to other veterans and non- framework for transparent reporting of data quality for veterans. The Economic Research Service linked data integrated data products, including appropriate statistical from their Food Security Supplement on the U.S. Census standards. Whether Federal statistics come from tradi- Bureau’s Current Population Survey with the Department tional household and establishment surveys and carefully of Veteran’s Affairs administrative data on veterans in designed administrative records systems or from sources order to examine the prevalence and trends in food secu- not initially designed for statistical purposes, data qual- rity among working-age veterans and their households. ity must be communicated transparently and understood The combined survey and administrative data provides to provide the best available statistical information to accurate and detailed information
Recommended publications
  • Chapter 4 Research Methodology
    The impact of E-marketing practices on market performance of small business enterprises. An empirical investigation. Item Type Thesis Authors El-Gohary, Hatem O.A.S. Rights <a rel="license" href="http://creativecommons.org/licenses/ by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by- nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http:// creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. Download date 26/09/2021 11:58:39 Link to Item http://hdl.handle.net/10454/4308 Chapter 4 Research Methodology 4.1 Introduction:- This chapter discusses the methodology used to conduct the research study as well as the issues related to the chosen research methodology when investigating the different factors affecting the adoption of E-Marketing by industrial and trading UK SBEs, the different forms, tools and levels of implementation of E-Marketing by these enterprises as well as the relationship between E-Marketing adoption and marketing performance of these SBEs. Through this discussion the steps that were taken to address the research design, the data collection and analysis methods used to conduct the research study will be illustrated. These issues are addressed in light of the basic research objectives and the relevant research questions discussed in chapter one and the research framework discussed in chapter seven. Firstly it discusses some possible research designs and methodologies and provides a brief review of the literature of research methodologies, research strategies and research methods implemented in the fields of E-Marketing and SBEs.
    [Show full text]
  • Evaluation Design Report for the National Cancer Institute's
    February 2009 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0210903.000.005 RTI Project Number 0210903.0001.005 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report February 2009 Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 Contents Section Page Acronyms Error! Bookmark not defined. Executive Summary ES-Error! Bookmark not defined. 1. Introduction Error! Bookmark not defined. 1.1 Overview of the NCCCP Error! Bookmark not defined. 1.2 Summary of the NCCCP Sites Error! Bookmark not defined. 1.3 Process Completed for an Evaluability Assessment Error! Bookmark not defined. 1.3.1 Step 1: Pilot Site Evaluability Assessment (September 2007–June 2008) .................................................. Error! Bookmark not defined. 1.3.2 Step 2: Engage Stakeholders (September 2007–September 2008)Error! Bookmark not defined.
    [Show full text]
  • Methods Used in the Development of the Global Roads Open Access Data Set (Groads), Version 1
    Methods Used in the Development of the Global Roads Open Access Data Set (gROADS), Version 1 Table of Contents Introduction ................................................................................................................................................................... 2 Data Assessment and Selection ..................................................................................................................................... 2 Root Mean Square Error (RMSE) ............................................................................................................................... 2 Validation against Google Earth (GE) imagery .......................................................................................................... 4 Calculating total length of roads ............................................................................................................................... 6 Choosing a data set for further edits ........................................................................................................................ 8 Data ingest: Creating and populating geodatabases ..................................................................................................... 8 Data editing ................................................................................................................................................................... 9 Creating a topology ..................................................................................................................................................
    [Show full text]
  • DHS Data Editing and Imputation Trevor Croft
    DHS Data Editing and Imputation Trevor Croft, Demographic and Health Surveys Abstract Producing good quality demographic and health data and making it accessible to data users worldwide is one of the main aims of the Demographic and Health Surveys program. However, large scale surveys in developing countries, particularly those collecting retrospective data, are prone to poor reporting. Survey data have suffered traditionally from incomplete and inconsistent reporting, To handle these problems, DHS performed extensive data editing operations. In addition, imputation procedures were established to deal with partial reporting of dates of key events in the respondent's life. General techniques for handling incomplete and inconsistent data are considered. The paper then presents the DHS approach to data editing. The major focus is on the editing of dates of events and the intervals between events. The editing and imputation process starts with the calculation of initial logical ranges for each date, and gradually constrains these ranges to produce final logical ranges. Inconsistent data are reported in error listings during this process. Dates are imputed for events with incomplete reporting within these final logical ranges. The levels of imputation required in the DHS-I surveys are presented. Various problem areas involved with the imputation of incomplete dates are explained. These include biases caused by questionnaire design, miscalculation of dates by interviewers and ancillary data biases. Problems relating to fine temporal variables and to unconstrained ranges for dates are also reviewed. Finally, the changes introduced as part of the editing and imputation procedures for DHS- II to resolve some of the problem areas are presented and ideas for further improvements are discussed.
    [Show full text]
  • Data Management, Analysis Tools, and Analysis Mechanics
    Chapter 2 Data Management, Analysis Tools, and Analysis Mechanics This chapter explores different tools and techniques for handling data for research purposes. This chapter assumes that a research problem statement has been formulated, research hypotheses have been stated, data collection planning has been conducted, and data have been collected from various sources (see Volume I for information and details on these phases of research). This chapter discusses how to combine and manage data streams, and how to use data management tools to produce analytical results that are error free and reproducible, once useful data have been obtained to accomplish the overall research goals and objectives. Purpose of Data Management Proper data handling and management is crucial to the success and reproducibility of a statistical analysis. Selection of the appropriate tools and efficient use of these tools can save the researcher numerous hours, and allow other researchers to leverage the products of their work. In addition, as the size of databases in transportation continue to grow, it is becoming increasingly important to invest resources into the management of these data. There are a number of ancillary steps that need to be performed both before and after statistical analysis of data. For example, a database composed of different data streams needs to be matched and integrated into a single database for analysis. In addition, in some cases data must be transformed into the preferred electronic format for a variety of statistical packages. Sometimes, data obtained from “the field” must be cleaned and debugged for input and measurement errors, and reformatted. The following sections discuss considerations for developing an overall data collection, handling, and management plan, and tools necessary for successful implementation of that plan.
    [Show full text]
  • An Introduction to the Data Editing Process
    1 AN INTRODUCTION TO THE DATA EDITING PROCESS by Dania P. Ferguson United States Department of Agriculture National Agricultural Statistics Service Abstract: A primer on the various data editing methodologies, the impact of their usage, available supporting software, and considerations when developing new software. I. INTRODUCTION The intention of this paper is to promote a better understanding of the various data editing methods and the impact of their usage as well as the software available to support the use of the various methodologies. It is hoped that this paper will serve as: - a brief overview of the most commonly used editing methodologies, - an aid to organize further reading about data editing systems, - a general description of the data editing process for use by designers and developers of generalized data editing systems. II. REVIEW OF THE PROCESS Data editing is defined as the process involving the review and adjustment of collected survey data. The purpose is to control the quality of the collected data. This process is divided into four (4) major sub-process areas. These areas are: - Survey Management - Data Capture - Data Review - Data Adjustment The rest of this section will describe each of the four (4) sub-processes. 1. Survey Management The survey management functions are: a) completeness checking, and b) quality control including audit trails and the gathering of cost data. These functions are administrative in nature. Completeness checking occurs at both survey and questionnaire levels. 2 At survey level, completeness checking ensures that all survey data have been collected. It is vitally important to account for all samples because sample counts are used in the data expansion procedures that take place during Summary.
    [Show full text]
  • Handbook on Precision Requirements and Variance Estimation for ESS Households Surveys
    ISSN 1977-0375 Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS households surveys 2013 edition Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS household surveys 2013 edition Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*)0H The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-79-31197-0 ISSN 1977-0375 doi:10.2785/13579 Cat. No: KS-RA-13-029-EN-N Theme: General and regional statistics Collection: Methodologies & Working papers © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Acknowledgments Acknowledgments The European Commission expresses its gratitude and appreciation to the following members of the ESS1 Task Force, for their work on Precision Requirements and Variance Estimation for Household Surveys: Experts from the European Statistical System (ESS): Martin Axelson Sweden — Statistics Sweden Loredana Di Consiglio Italy — ISTAT Kari Djerf Finland — Statistics Finland Stefano Falorsi Italy — ISTAT Alexander Kowarik Austria — Statistics Austria Mārtiņš Liberts Latvia — CSB Ioannis Nikolaidis Greece — EL.STAT Experts from European
    [Show full text]
  • NCRM Social Sciences Research Methods Typology (2014)
    NCRM Social Sciences Research Methods Typology (2014) Level 1 Categories Level 2 Subcategories Level 3 Descriptor Terms Frameworks for Research and Research Designs Epistemology Philosophy of social science; Critical theory; Feminist methods; Humanistic methods; Interpretivism; Positivism; Postmodernism; Poststructuralism Descriptive Research Exploratory Research Explanatory Research and Causal analysis Comparative and Cross Cross-national research; National Research Cross-cultural research; Comparative research; Historical comparative research Survey Research Cross-Sectional Research Repeated cross-sections Longitudinal Research Panel survey; Cohort study; Qualitative longitudinal research (QLR); Mixed methods longitudinal research Experimental Research Experimental design; Laboratory studies; Randomized Control Trials (RCT) Quasi-Experimental Research Case-control studies; Difference-in-differences (DID); Paired comparison; Instrumental variables; Regression discontinuity; Twin studies Evaluation Research Policy evaluation; Consumer satisfaction; Theory of change methods Case Study Pilot Study Participatory Research Child-led research; Emancipatory research; Inclusive research; Indigenous methodology; 1 Participatory Action Research (PAR); User engagement Action Research Participatory Action Research (PAR) Ethnographic Research Behavioural Research Meta-Analysis Mantel-Haenszel methods Systematic Review Secondary Analysis Archival research; Documentary research; Analysis of official statistics; Analysis of existing survey data; Analysis
    [Show full text]
  • Assessing Sample Bias and Establishing Standardized
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data Fahmida Nilufar Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons Recommended Citation Nilufar, Fahmida, "Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data" (2003). LSU Master's Theses. 1204. https://digitalcommons.lsu.edu/gradschool_theses/1204 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ASSESSING SAMPLE BIAS AND ESTABLISHING STANDARDIZED PROCEDURES FOR WEIGHTING AND EXPANSION OF TRAVEL SURVEY DATA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering by Fahmida Nilufar B.S., Bangladesh University of Engineering and Technology, 1977 M.S., Bangladesh University of Engineering and Technology, 1985 August 2003 Acknowledgments I would like to express my appreciation to my advisor Dr. Chester Wilmot, for his valuable comments, guidance, support and patience throughout the process. I would also like to thank Dr. Brian Wolshon and Dr. Sherif Ishak for their thoughtful comments on the initial proposal of this work and for consenting to be on my graduate committee.
    [Show full text]
  • STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
    OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................
    [Show full text]
  • Guide to Good Statistical Practice in the Transportation Field
    U.S. Department of Transportation Bureau of Transportation Statistics Guide to Good Statistical Practice in the Transportation Field Updated May 2003 1. Introduction Quality of data has many faces. Primarily, it has to be relevant (i.e., useful) to its users. Relevance is achieved through a series of steps starting with a planning process that links user needs to data requirements. It continues through acquisition of data that is accurate in measuring what it was designed to measure and produced in a timely manner. Finally, the data must be made accessible and easy to interpret for the users. In a more global sense, data systems also need to be complete and comparable (to both other data systems and to earlier versions). The creation of data that address all of the facets of quality is a unified effort of all of the development phases from the initial data system objectives, through system design, collection, processing, and dissemination to the users. These sequential phases are like links in a chain. The sufficiency of each phase must be maintained to achieve relevance. This document is intended to help management and data system “owners” achieve relevance through that sequential process. 1.1 Legislative Background The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) created the Bureau of Transportation Statistics (BTS) within the Department of Transportation (DOT). Among other things, it made BTS responsible for: “issuing guidelines for the collection of information by the Department of Transportation required for statistics … in order to ensure that such information is accurate, reliable, relevant, and in a form that permits systematic analysis.” (49 U.S.C.
    [Show full text]
  • Statistical Data Editing
    UNITED NATIONS STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS STATISTICAL STANDARDS AND STUDIES - No. 44 STATISTICAL DATA EDITING Volume No. 1 METHODS AND TECHNIQUES UNITED NATIONS New York and Geneva, 1994 III CONTENTS PREFACE A. REVIEW OF STATISTICAL DATA EDITING METHODS AND TECHNIQUES - An Introduction to the Data Editing Process Page 1 (Dania Ferguson, United States Department of Agriculture, National Agricultural Statistics Service) - A Review of the State of the Art in Automated Data Editing Page 10 and Imputation (Mark Pierzchala, United States Department of Agriculture, National Agricultural Statistics Service) - On the Need for Generalized Numeric and Imputation Systems Page 41 (Leopold Granquist, Statistics Sweden) - Evaluation of Data Editing Procedures: Results of a Simulation Approach Page 52 (Emiliano Garcia Rubio and Vicente Peirats Cuesta, National Statistical Institute of Spain) - A systematic approach to Automatic Edit and Imputation Page 69 (I. Fellegi, Statistics Canada and D. Holt, University of Southampton, United Kingdom) B. MACRO-EDITING PROCEDURES - Macro-Editing - A Review of Methods for Rationalizing the Editing of Page 109 Survey Data (Leopold Granquist, Statistics Sweden) - Macro-Editing - The Hidiroglou-Berthelot Method Page 125 (Eiwor Hoglund Davila, Statistics Sweden) - Macro-Editing - The Aggregate Method Page 135 (Leopold Granquist, Statistics Sweden) - Macro-Editing - The Top-Down Method Page 142 (Leopold Granquist, Statistics Sweden) IV C. IMPLEMENTATION OF DATA EDITING PROCEDURES - Data Editing in a Mixed DBMS Environment Page 146 (N.W.P. Cox/D.A. Croot, Statistics Canada) - Blaise - A New Approach to Computer Assisted Survey Processing Page 165 (D. Denteneer, J.G. Bethlehem, A.J. Hundepool & M.S.
    [Show full text]