Statistical Data Editing

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Data Editing UNITED NATIONS STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS STATISTICAL STANDARDS AND STUDIES - No. 44 STATISTICAL DATA EDITING Volume No. 1 METHODS AND TECHNIQUES UNITED NATIONS New York and Geneva, 1994 III CONTENTS PREFACE A. REVIEW OF STATISTICAL DATA EDITING METHODS AND TECHNIQUES - An Introduction to the Data Editing Process Page 1 (Dania Ferguson, United States Department of Agriculture, National Agricultural Statistics Service) - A Review of the State of the Art in Automated Data Editing Page 10 and Imputation (Mark Pierzchala, United States Department of Agriculture, National Agricultural Statistics Service) - On the Need for Generalized Numeric and Imputation Systems Page 41 (Leopold Granquist, Statistics Sweden) - Evaluation of Data Editing Procedures: Results of a Simulation Approach Page 52 (Emiliano Garcia Rubio and Vicente Peirats Cuesta, National Statistical Institute of Spain) - A systematic approach to Automatic Edit and Imputation Page 69 (I. Fellegi, Statistics Canada and D. Holt, University of Southampton, United Kingdom) B. MACRO-EDITING PROCEDURES - Macro-Editing - A Review of Methods for Rationalizing the Editing of Page 109 Survey Data (Leopold Granquist, Statistics Sweden) - Macro-Editing - The Hidiroglou-Berthelot Method Page 125 (Eiwor Hoglund Davila, Statistics Sweden) - Macro-Editing - The Aggregate Method Page 135 (Leopold Granquist, Statistics Sweden) - Macro-Editing - The Top-Down Method Page 142 (Leopold Granquist, Statistics Sweden) IV C. IMPLEMENTATION OF DATA EDITING PROCEDURES - Data Editing in a Mixed DBMS Environment Page 146 (N.W.P. Cox/D.A. Croot, Statistics Canada) - Blaise - A New Approach to Computer Assisted Survey Processing Page 165 (D. Denteneer, J.G. Bethlehem, A.J. Hundepool & M.S. Schuerhoff, Central Bureau of Statistics of the Netherlands) - SAS Usage in Data Editing Page 174 (Dania Ferguson, United States Department of Agriculture, National Agricultural Statistics Service) - A Macro-Editing Application Developed in PC-SAS Page 180 (Klas Lindstrom, Statistics Sweden) V PREFACE Data editing methods and techniques may significantly influence the quality of statistical data as well as the cost efficiency of statistical production. The aim of this publication is to assist National Statistical Offices in their efforts to improve and economize their data editing processes. Different methods and techniques can be used in the various stages of the data editing process; that is in survey management, data capture, data review and data adjustment. Questions as to what methods and techniques to use for data review and data adjustment, as well as the iterative character of these two steps, are often very sensitive. The publication, therefore, particularly focuses on these issues. Part A -- Review of Statistical Data Editing Methods and Techniques -- presents a more detailed treatment of data editing methods and considerations pertaining to each. It describes some examples and experiences achieved in statistical practice. To complete the methodological part of the presented review, the Fellegi-Holt methodology, as a most frequently used approach, is presented here in its entirety. Part B -- Macro-editing Procedures -- is devoted to macro-editing methods as powerful tools for the rationalizing of the data review process through error detection at the aggregated level. Significant savings are achieved in some cases when implementing macro- instead of micro-editing procedures. The most advanced experiences in this respect are reported from Statistics Sweden . Another important aspect is an appropriate computerization of the data editing process. Part C -- Implementation of Data Editing Procedures -- deals with some of these features. Surprisingly few commercially developed software packages provide efficient facilities for statistical data editing. Taking into account a mixed technological environment, only SAS was reported. Tailor-made software systems prevail. Some experiences with SAS applications and individually prepared systems such as GEIS, DC2 (both prepared in Statistics Canada) and BLAISE (developed in the Netherlands Central Bureau of Statistics) are presented in this part of the publication An integral part of the publication is the Bibliography presented in Part D. The authors' intention in the preparation of this section was to spread knowledge on the already prepared and published studies and other materials dealing with statistical data editing methods and techniques. This publication is based on contributions of the group of experts working within the project on Statistical Data Editing in the programme of work of the Conference of European Statisticians. It was compiled and edited by the Statistical Division of the United Nations Economic Commission for Europe. This material represents an extensive voluntary effort on the parts of authors. The editors express their appreciation and thanks to all authors who contributed to the publication, as well as to all members of the UN Working Group on Statistical Data Editing whose joint efforts contributed significantly to the preparation of this publication. 1 AN INTRODUCTION TO THE DATA EDITING PROCESS by Dania P. Ferguson United States Department of Agriculture National Agricultural Statistics Service Abstract: A primer on the various data editing methodologies, the impact of their usage, available supporting software, and considerations when developing new software. I. INTRODUCTION The intention of this paper is to promote a better understanding of the various data editing methods and the impact of their usage as well as the software available to support the use of the various methodologies. It is hoped that this paper will serve as: - a brief overview of the most commonly used editing methodologies, - an aid to organize further reading about data editing systems, - a general description of the data editing process for use by designers and developers of generalized data editing systems. II. REVIEW OF THE PROCESS Data editing is defined as the process involving the review and adjustment of collected survey data. The purpose is to control the quality of the collected data. This process is divided into four (4) major sub-process areas. These areas are: - Survey Management - Data Capture - Data Review - Data Adjustment The rest of this section will describe each of the four (4) sub-processes. 1. Survey Management The survey management functions are: a) completeness checking, and b) quality control including audit trails and the gathering of cost data. These functions are administrative in nature. Completeness checking occurs at both survey and questionnaire levels. 2 At survey level, completeness checking ensures that all survey data have been collected. It is vitally important to account for all samples because sample counts are used in the data expansion procedures that take place during Summary. Therefore, changes in the sample count impact the expansion. A minimal completeness check compares the Sample count to the questionnaire count to insure that all samples are accounted for, even if no data were collected. In the case of a Census, the number of returned questionnaires are compared to the number of distributed questionnaires or to an estimated number of questionnaires expected to be returned. Questionnaire level completeness checking insures routing instructions have been followed. Questionnaires should be coded to specify whether the respondent was inaccessible or has refused, this information can be used in verification procedures. Survey management includes quality control of the data collection process and measures of the impact on the data by the data adjustment that occurs in sub-process No. 3 below. Survey management is a step in the quality control process that assures that the underlying statistical assumptions of a survey are not violated. "Long after methods of calculation are forgotten, the meaning of the principal statistical measures and the assumptions which condition their use should be maintained", (Neiswanger, 1947). Survey management functions are not data editing functions per se but, many of the functions require accounting and auditing information to be captured during the editing process. Thus, survey management must be integrated in the design of data editing systems. 2. Data Capture Data capture is the conversion of data to electronic media. The data may be key entered in either a heads down or heads up mode. a. Heads down data entry refers to data entry with no error detection occurring at the time of entry. High-speed data - entry personnel are used to key data in a "heads down" mode. Data entered in a heads down mode is often verified by re-keying the questionnaire and comparing the two keyed copies of the same questionnaire. b. Heads up data entry refers to data entry with a review at time of entry. Heads up data entry requires subject matter knowledge by the individuals entering the data. Data entry is slower, but data review/adjustment is reduced since simple inconsistencies in responses are found earlier in the survey process. This mode is specially effective when the interviewer or respondent enter data during the interview. This is known as Computer Assisted Interviewing which is explained in more detail below. Data may be captured by many automated methods without traditional key entry. As technology advances, many more tools will become available for data capture. One popular tool is the touch-tone telephone key-pad with synthesized
Recommended publications
  • Chapter 4 Research Methodology
    The impact of E-marketing practices on market performance of small business enterprises. An empirical investigation. Item Type Thesis Authors El-Gohary, Hatem O.A.S. Rights <a rel="license" href="http://creativecommons.org/licenses/ by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by- nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http:// creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. Download date 26/09/2021 11:58:39 Link to Item http://hdl.handle.net/10454/4308 Chapter 4 Research Methodology 4.1 Introduction:- This chapter discusses the methodology used to conduct the research study as well as the issues related to the chosen research methodology when investigating the different factors affecting the adoption of E-Marketing by industrial and trading UK SBEs, the different forms, tools and levels of implementation of E-Marketing by these enterprises as well as the relationship between E-Marketing adoption and marketing performance of these SBEs. Through this discussion the steps that were taken to address the research design, the data collection and analysis methods used to conduct the research study will be illustrated. These issues are addressed in light of the basic research objectives and the relevant research questions discussed in chapter one and the research framework discussed in chapter seven. Firstly it discusses some possible research designs and methodologies and provides a brief review of the literature of research methodologies, research strategies and research methods implemented in the fields of E-Marketing and SBEs.
    [Show full text]
  • Evaluation Design Report for the National Cancer Institute's
    February 2009 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0210903.000.005 RTI Project Number 0210903.0001.005 Evaluation Design Report for the National Cancer Institute’s Community Cancer Centers Program (NCCCP) Final Report February 2009 Prepared for Steve Clauser, PhD Chief, Outcomes Research Branch Applied Research Program Division of Cancer Control and Population Sciences National Cancer Institute Executive Plaza North, Room 4086 6130 Executive Boulevard, (MSC 7344) Bethesda, MD 20892-7344 Prepared by Debra J. Holden, PhD Kelly J. Devers, PhD Lauren McCormack, PhD Kathleen Dalton, PhD Sonya Green, MPH Katherine Treiman, PhD RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 Contents Section Page Acronyms Error! Bookmark not defined. Executive Summary ES-Error! Bookmark not defined. 1. Introduction Error! Bookmark not defined. 1.1 Overview of the NCCCP Error! Bookmark not defined. 1.2 Summary of the NCCCP Sites Error! Bookmark not defined. 1.3 Process Completed for an Evaluability Assessment Error! Bookmark not defined. 1.3.1 Step 1: Pilot Site Evaluability Assessment (September 2007–June 2008) .................................................. Error! Bookmark not defined. 1.3.2 Step 2: Engage Stakeholders (September 2007–September 2008)Error! Bookmark not defined.
    [Show full text]
  • Methods Used in the Development of the Global Roads Open Access Data Set (Groads), Version 1
    Methods Used in the Development of the Global Roads Open Access Data Set (gROADS), Version 1 Table of Contents Introduction ................................................................................................................................................................... 2 Data Assessment and Selection ..................................................................................................................................... 2 Root Mean Square Error (RMSE) ............................................................................................................................... 2 Validation against Google Earth (GE) imagery .......................................................................................................... 4 Calculating total length of roads ............................................................................................................................... 6 Choosing a data set for further edits ........................................................................................................................ 8 Data ingest: Creating and populating geodatabases ..................................................................................................... 8 Data editing ................................................................................................................................................................... 9 Creating a topology ..................................................................................................................................................
    [Show full text]
  • DHS Data Editing and Imputation Trevor Croft
    DHS Data Editing and Imputation Trevor Croft, Demographic and Health Surveys Abstract Producing good quality demographic and health data and making it accessible to data users worldwide is one of the main aims of the Demographic and Health Surveys program. However, large scale surveys in developing countries, particularly those collecting retrospective data, are prone to poor reporting. Survey data have suffered traditionally from incomplete and inconsistent reporting, To handle these problems, DHS performed extensive data editing operations. In addition, imputation procedures were established to deal with partial reporting of dates of key events in the respondent's life. General techniques for handling incomplete and inconsistent data are considered. The paper then presents the DHS approach to data editing. The major focus is on the editing of dates of events and the intervals between events. The editing and imputation process starts with the calculation of initial logical ranges for each date, and gradually constrains these ranges to produce final logical ranges. Inconsistent data are reported in error listings during this process. Dates are imputed for events with incomplete reporting within these final logical ranges. The levels of imputation required in the DHS-I surveys are presented. Various problem areas involved with the imputation of incomplete dates are explained. These include biases caused by questionnaire design, miscalculation of dates by interviewers and ancillary data biases. Problems relating to fine temporal variables and to unconstrained ranges for dates are also reviewed. Finally, the changes introduced as part of the editing and imputation procedures for DHS- II to resolve some of the problem areas are presented and ideas for further improvements are discussed.
    [Show full text]
  • Data Management, Analysis Tools, and Analysis Mechanics
    Chapter 2 Data Management, Analysis Tools, and Analysis Mechanics This chapter explores different tools and techniques for handling data for research purposes. This chapter assumes that a research problem statement has been formulated, research hypotheses have been stated, data collection planning has been conducted, and data have been collected from various sources (see Volume I for information and details on these phases of research). This chapter discusses how to combine and manage data streams, and how to use data management tools to produce analytical results that are error free and reproducible, once useful data have been obtained to accomplish the overall research goals and objectives. Purpose of Data Management Proper data handling and management is crucial to the success and reproducibility of a statistical analysis. Selection of the appropriate tools and efficient use of these tools can save the researcher numerous hours, and allow other researchers to leverage the products of their work. In addition, as the size of databases in transportation continue to grow, it is becoming increasingly important to invest resources into the management of these data. There are a number of ancillary steps that need to be performed both before and after statistical analysis of data. For example, a database composed of different data streams needs to be matched and integrated into a single database for analysis. In addition, in some cases data must be transformed into the preferred electronic format for a variety of statistical packages. Sometimes, data obtained from “the field” must be cleaned and debugged for input and measurement errors, and reformatted. The following sections discuss considerations for developing an overall data collection, handling, and management plan, and tools necessary for successful implementation of that plan.
    [Show full text]
  • An Introduction to the Data Editing Process
    1 AN INTRODUCTION TO THE DATA EDITING PROCESS by Dania P. Ferguson United States Department of Agriculture National Agricultural Statistics Service Abstract: A primer on the various data editing methodologies, the impact of their usage, available supporting software, and considerations when developing new software. I. INTRODUCTION The intention of this paper is to promote a better understanding of the various data editing methods and the impact of their usage as well as the software available to support the use of the various methodologies. It is hoped that this paper will serve as: - a brief overview of the most commonly used editing methodologies, - an aid to organize further reading about data editing systems, - a general description of the data editing process for use by designers and developers of generalized data editing systems. II. REVIEW OF THE PROCESS Data editing is defined as the process involving the review and adjustment of collected survey data. The purpose is to control the quality of the collected data. This process is divided into four (4) major sub-process areas. These areas are: - Survey Management - Data Capture - Data Review - Data Adjustment The rest of this section will describe each of the four (4) sub-processes. 1. Survey Management The survey management functions are: a) completeness checking, and b) quality control including audit trails and the gathering of cost data. These functions are administrative in nature. Completeness checking occurs at both survey and questionnaire levels. 2 At survey level, completeness checking ensures that all survey data have been collected. It is vitally important to account for all samples because sample counts are used in the data expansion procedures that take place during Summary.
    [Show full text]
  • Handbook on Precision Requirements and Variance Estimation for ESS Households Surveys
    ISSN 1977-0375 Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS households surveys 2013 edition Methodologies and Working papers Handbook on precision requirements and variance estimation for ESS household surveys 2013 edition Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*)0H The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-79-31197-0 ISSN 1977-0375 doi:10.2785/13579 Cat. No: KS-RA-13-029-EN-N Theme: General and regional statistics Collection: Methodologies & Working papers © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Acknowledgments Acknowledgments The European Commission expresses its gratitude and appreciation to the following members of the ESS1 Task Force, for their work on Precision Requirements and Variance Estimation for Household Surveys: Experts from the European Statistical System (ESS): Martin Axelson Sweden — Statistics Sweden Loredana Di Consiglio Italy — ISTAT Kari Djerf Finland — Statistics Finland Stefano Falorsi Italy — ISTAT Alexander Kowarik Austria — Statistics Austria Mārtiņš Liberts Latvia — CSB Ioannis Nikolaidis Greece — EL.STAT Experts from European
    [Show full text]
  • NCRM Social Sciences Research Methods Typology (2014)
    NCRM Social Sciences Research Methods Typology (2014) Level 1 Categories Level 2 Subcategories Level 3 Descriptor Terms Frameworks for Research and Research Designs Epistemology Philosophy of social science; Critical theory; Feminist methods; Humanistic methods; Interpretivism; Positivism; Postmodernism; Poststructuralism Descriptive Research Exploratory Research Explanatory Research and Causal analysis Comparative and Cross Cross-national research; National Research Cross-cultural research; Comparative research; Historical comparative research Survey Research Cross-Sectional Research Repeated cross-sections Longitudinal Research Panel survey; Cohort study; Qualitative longitudinal research (QLR); Mixed methods longitudinal research Experimental Research Experimental design; Laboratory studies; Randomized Control Trials (RCT) Quasi-Experimental Research Case-control studies; Difference-in-differences (DID); Paired comparison; Instrumental variables; Regression discontinuity; Twin studies Evaluation Research Policy evaluation; Consumer satisfaction; Theory of change methods Case Study Pilot Study Participatory Research Child-led research; Emancipatory research; Inclusive research; Indigenous methodology; 1 Participatory Action Research (PAR); User engagement Action Research Participatory Action Research (PAR) Ethnographic Research Behavioural Research Meta-Analysis Mantel-Haenszel methods Systematic Review Secondary Analysis Archival research; Documentary research; Analysis of official statistics; Analysis of existing survey data; Analysis
    [Show full text]
  • Assessing Sample Bias and Establishing Standardized
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data Fahmida Nilufar Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons Recommended Citation Nilufar, Fahmida, "Assessing sample bias and establishing standardized procedures for weighting and expansion of travel survey data" (2003). LSU Master's Theses. 1204. https://digitalcommons.lsu.edu/gradschool_theses/1204 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ASSESSING SAMPLE BIAS AND ESTABLISHING STANDARDIZED PROCEDURES FOR WEIGHTING AND EXPANSION OF TRAVEL SURVEY DATA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in The Department of Civil and Environmental Engineering by Fahmida Nilufar B.S., Bangladesh University of Engineering and Technology, 1977 M.S., Bangladesh University of Engineering and Technology, 1985 August 2003 Acknowledgments I would like to express my appreciation to my advisor Dr. Chester Wilmot, for his valuable comments, guidance, support and patience throughout the process. I would also like to thank Dr. Brian Wolshon and Dr. Sherif Ishak for their thoughtful comments on the initial proposal of this work and for consenting to be on my graduate committee.
    [Show full text]
  • STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
    OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................
    [Show full text]
  • Guide to Good Statistical Practice in the Transportation Field
    U.S. Department of Transportation Bureau of Transportation Statistics Guide to Good Statistical Practice in the Transportation Field Updated May 2003 1. Introduction Quality of data has many faces. Primarily, it has to be relevant (i.e., useful) to its users. Relevance is achieved through a series of steps starting with a planning process that links user needs to data requirements. It continues through acquisition of data that is accurate in measuring what it was designed to measure and produced in a timely manner. Finally, the data must be made accessible and easy to interpret for the users. In a more global sense, data systems also need to be complete and comparable (to both other data systems and to earlier versions). The creation of data that address all of the facets of quality is a unified effort of all of the development phases from the initial data system objectives, through system design, collection, processing, and dissemination to the users. These sequential phases are like links in a chain. The sufficiency of each phase must be maintained to achieve relevance. This document is intended to help management and data system “owners” achieve relevance through that sequential process. 1.1 Legislative Background The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) created the Bureau of Transportation Statistics (BTS) within the Department of Transportation (DOT). Among other things, it made BTS responsible for: “issuing guidelines for the collection of information by the Department of Transportation required for statistics … in order to ensure that such information is accurate, reliable, relevant, and in a form that permits systematic analysis.” (49 U.S.C.
    [Show full text]
  • Strengthening Federal Statistics
    18. STRENGTHENING FEDERAL STATISTICS The Federal Statistical System (FSS) has reliably and consistent with system-wide priorities; and develop and impartially informed the nation about its population, con- oversee the implementation of Governmentwide statis- dition, and progress since its founding, beginning with tical policies, principles, guidelines, and standards. The the first constitutionally-mandated Census in 1790. The Chief Statistician chairs the ICSP, made up of the heads mission of the FSS is to collect and transform data into of the thirteen PSAs and one rotating member from a non- useful, objective information; making it readily and eq- PSA agency that conducts significant statistical activity, uitably available to government, private businesses, currently the National Center for Veterans Analysis and and the public. There are thirteen Principal Statistical Statistics. The ICSP provides strategic leadership for Agencies (PSAs—see Table 18–1) and almost 100 non- the FSS on system-wide priorities such as improving PSA statistical units spread across the Executive Branch researcher access to confidential data while protecting that generate statistics on such topics as the economy, privacy, increasing response rates on surveys while eas- workforce, energy, agriculture, foreign trade, education, ing the cost and burden on respondents, and acquiring housing, crime, transportation, and health. The PSAs and maintaining a highly skilled workforce. CIPSEA pro- are continuously developing new methods for collecting vides a common statutory framework for the collection, and combining data from multiple sources in order to ex- handling, and dissemination of confidential data and al- pand and improve the quality and timeliness of statistical lows agencies to assure respondents that their data will evidence needed to make important decisions in today’s only be used for statistical and research purposes.
    [Show full text]