ISTS-2017-D-101ⅠISSFD-2017-101
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat. -
The Aerospace Update
The Aerospace Update First Light from a Gravitational-Wave Event Oct. 17, 2017 Video Credit: NASA's Goddard Space Flight Center/CI Lab First Light from a Gravitational-Wave Event For the first time ever, scientists have spotted both gravitational waves and light coming from the same cosmic event — in this case, the cataclysmic merger of two super dense stellar corpses known as neutron stars. The landmark discovery initiates the field of "multi-messenger astrophysics," which promises to reveal exciting new insights about the cosmos, researchers said. The find also provides the first solid evidence that neutron-star smashups are the source of much of the universe's gold, platinum and other heavy elements. Source: Mike Wall, Space.com Image Credit: Robin Dienel, Carnegie Institution for Science ATLAS 5 Launches Classified NROL 52 Satellite A covert communications relay station to route spy satellite data directly to users was successfully launched by a million-pound Atlas 5 rocket overnight. The United Launch Alliance rocket left Cape Canaveral under the cover of darkness on Sunday, Oct. 15th, dodging rain showers while speeding through decks of clouds, for a trek to geosynchronous transfer orbit to deploy the NROL-52 spacecraft. The fifth launch attempt proved to be the charm for NROL-52 after four thwarted tries over the past week, mainly due to bad weather. Video courtesy of United Launch Alliance Source: Justin Ray @ SpaceFlightNow.com SpaceX Launches Third Pre-Flown Rocket with EchoStar-SES Satellite, Lands Booster Maintaining a brisk flight rate three days after its last launch, SpaceX sent a Falcon 9 booster powered by a reused first stage into orbit on Wednesday evening, Oct 11th from Florida with an Airbus-built communications satellite for SES and EchoStar. -
Positioning: Drift Orbit and Station Acquisition
Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee. -
Elliptical Orbits
1 Ellipse-geometry 1.1 Parameterization • Functional characterization:(a: semi major axis, b ≤ a: semi minor axis) x2 y 2 b p + = 1 ⇐⇒ y(x) = · ± a2 − x2 (1) a b a • Parameterization in cartesian coordinates, which follows directly from Eq. (1): x a · cos t = with 0 ≤ t < 2π (2) y b · sin t – The origin (0, 0) is the center of the ellipse and the auxilliary circle with radius a. √ – The focal points are located at (±a · e, 0) with the eccentricity e = a2 − b2/a. • Parameterization in polar coordinates:(p: parameter, 0 ≤ < 1: eccentricity) p r(ϕ) = (3) 1 + e cos ϕ – The origin (0, 0) is the right focal point of the ellipse. – The major axis is given by 2a = r(0) − r(π), thus a = p/(1 − e2), the center is therefore at − pe/(1 − e2), 0. – ϕ = 0 corresponds to the periapsis (the point closest to the focal point; which is also called perigee/perihelion/periastron in case of an orbit around the Earth/sun/star). The relation between t and ϕ of the parameterizations in Eqs. (2) and (3) is the following: t r1 − e ϕ tan = · tan (4) 2 1 + e 2 1.2 Area of an elliptic sector As an ellipse is a circle with radius a scaled by a factor b/a in y-direction (Eq. 1), the area of an elliptic sector PFS (Fig. ??) is just this fraction of the area PFQ in the auxiliary circle. b t 2 1 APFS = · · πa − · ae · a sin t a 2π 2 (5) 1 = (t − e sin t) · a b 2 The area of the full ellipse (t = 2π) is then, of course, Aellipse = π a b (6) Figure 1: Ellipse and auxilliary circle. -
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan. 21, 1997 54) OPTIMAL TRANSFER ORBIT TRAJECTORY Meserole, J., "Launch Costs To GEO Using Solar Powered USENGELECTRIC PROPULSION Orbit Transfer Vehicles', American Institute of Aeronautics and Astronautic (AIAA) Paper 93-2219, AIAA/SAE/ 75) Inventor: Arnon Spitzer, Los Angeles, Calif. ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Jun. 28-30, 1993. (73) Assignee: Hughes Aircraft Company, Los Free, B. "High Altitude Orbit Raising With On-Board Angeles, Calif. Electric Power”, International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 217,791 Astronautics AIAA/AIDA/DGLA/JSASS 23rd International (22 Filed: Mar 25, 1994 Electric Propulsion Conference, Sep. 13-16, 1993. Parkhash, "Electric Propulsion for Space Missions' Electri (51) int. Cl. ................ B64G 1/10 cal India vol. 19, No. 7, pp. 5-18., Apr. 1979. (52 U.S. C. ........................................................ 244/158 R Davison, "orbit Expansion by Microthrust” Royal Aircraft 58 Field of Search ................................ 244/158 R, 164, Est. Tech Report 67249 Sep. 1967. 244/172, 168, 169 Primary Examiner-Galen L. Barefoot 56 References Cited Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Gud U.S. PATENT DOCUMENTS mestad; Wanda K. Denson-Low 4,943,014 7/1990 Harwood et al. ....................... 244/169 57) ABSTRACT FOREIGN PATENT DOCUMENTS An apparatus and method for translating a spacecraft (10) from an injection orbit (16) about a central body (10) to 0047211 3/1982 European Pat. Off. ............... 244/169 geosynchronous orbit (18) in a time efficient manner. -
Moon-Earth-Sun: the Oldest Three-Body Problem
Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem. -
Classification of Geosynchronous Objects
esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by ESA’s Space Debris Office Reference GEN-DB-LOG-00211-OPS-GR Issue 20 Revision 0 Date of Issue 28 May 2018 Status Issued Document Type Technical Note Distribution ESA UNCLASSIFIED - Limited Distribution European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2018. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1523 objects for which orbital data are available (of which 0 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 519 are actively controlled, 795 are drifting above, below or through GEO, 189 are in a libration orbit and 19 are in a highly inclined orbit. For 1 object the status could not be determined. Furthermore, there are 59 uncontrolled objects without orbital data (of which 54 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1582. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-902634 E-mail: [email protected] Page 1 / 187 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 28 May 2018 Issue 20 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) . -
A Series Solution for Some Periodic Orbits in the Restricted Three-Body Problem According to the Perturbation Method*
1966028656-225 !'_#.,/I ,i A SERIES SOLUTION FOR SOME PERIODIC ORBITS IN THE RESTRICTED THREE-BODY PROBLEM ACCORDING TO THE PERTURBATION METHOD* q Oil9"b su-s.u.UAXO, bodies in the restric'_ed three-body problem. The expansion is in terms of the mass of the less b massiveA seriesfiniteis body.obtainedThefor initialthose periodicconditionsorbitspredictedsurroundingby thetheseriesmoreformassiveseveral ofperiodicthe two orbitsfinite are compared with those obtained by purely numerical processes. They are in good ttgreement for the case corresponding to the earth-moon system. Also, a simple theory of nearly periodic orbits in the neighborhood of a periodic orbit is developed and numerically verified by ex'tmples. Finally, it is suggested that, if asteroids avoid places where their orbits wouhl be commensurable with the period of Jupiter, then artificial satellites and dust particles may avoid certain areas around the earth as a result of the presence of the moon. INTF:ODUCTION Actually, the present analysis is somewhat par- allel to the analysis that led Hill to his variation A periodic solution may be regarded as a solu- orbit, for both his and the present method ,lcpend tion of the differential equations of motion that upon some series expansions. However, in his satisfies, in addition to the initial conditions, the lunar theory Hill expanded the sohltion in terms condition that after a lapse of one period, P, both of the ratio of the mean motion of tim sun to that coordinates and velocities return to their initial of the moon in tlle rotating coordinate system. values. Thus, the problem of finding a periodic In this prcsent theory for artificial satellites orbit in celestial mechanics resembles the problem orbiting the earth in the earth-moon system the of finding the eigen function for an eigen value in solution is expanded in terms of the mass of the quantum mechanics, since the eigen value is deter- moon. -
Orbital Mechanics Course Notes
Orbital Mechanics Course Notes David J. Westpfahl Professor of Astrophysics, New Mexico Institute of Mining and Technology March 31, 2011 2 These are notes for a course in orbital mechanics catalogued as Aerospace Engineering 313 at New Mexico Tech and Aerospace Engineering 362 at New Mexico State University. This course uses the text “Fundamentals of Astrodynamics” by R.R. Bate, D. D. Muller, and J. E. White, published by Dover Publications, New York, copyright 1971. The notes do not follow the book exclusively. Additional material is included when I believe that it is needed for clarity, understanding, historical perspective, or personal whim. We will cover the material recommended by the authors for a one-semester course: all of Chapter 1, sections 2.1 to 2.7 and 2.13 to 2.15 of Chapter 2, all of Chapter 3, sections 4.1 to 4.5 of Chapter 4, and as much of Chapters 6, 7, and 8 as time allows. Purpose The purpose of this course is to provide an introduction to orbital me- chanics. Students who complete the course successfully will be prepared to participate in basic space mission planning. By basic mission planning I mean the planning done with closed-form calculations and a calculator. Stu- dents will have to master additional material on numerical orbit calculation before they will be able to participate in detailed mission planning. There is a lot of unfamiliar material to be mastered in this course. This is one field of human endeavor where engineering meets astronomy and ce- lestial mechanics, two fields not usually included in an engineering curricu- lum. -
Low Thrust Orbit Transfer Optimiser for a Spacecraft Simulator (Espss -Ecosimpro® European Space Propulsion System Simulation)
6th ICATT, Darmstadt, March 15th to 17th, 2016 LOW THRUST ORBIT TRANSFER OPTIMISER FOR A SPACECRAFT SIMULATOR (ESPSS -ECOSIMPRO® EUROPEAN SPACE PROPULSION SYSTEM SIMULATION) Christophe R. Koppel KopooS Consulting Ind., 57 rue d'Amsterdam-75008 Paris ABSTRACT and analyses. That is a visual tool capable of solving various kinds of dynamic systems represented by writing equations The paper describes the general strategy for electric and discrete events. It can be used to study both transients propulsion orbit transfers, an open source optimiser for orbit and steady states. Such object oriented tool, with the transfer based on averaging techniques and the integration propulsion libraries ESPSS from ESA for example, allows of such trajectory optimiser into EcosimPro® ESPSS users to draw (and design at the same time) the propulsion (European Space Propulsion System Simulation). system with components of that specific library with tanks, EcosimPro® is a Physical Simulation Modelling tool that is lines, orifices, thrusters, tees. The user enhances the design an object-oriented visual simulation tool capable of solving with components from the other libraries (thermal, control various kinds of dynamic systems represented by a set of electrical, EP, etc). equations, differential equations and discrete events. It can Into the last release of ESPSS [16], new features address be used to study both transients and steady states. The object "Evolutionary behaviour of components" and "Coupled oriented tool, with the propulsion libraries ESPSS from ESA Simulation of Propulsion System and Vehicle Dynamics" , for example, allows the user to draw (and to design at the which is actually a "Satellite library" that includes the flight same time) the propulsion system with components of that dynamic (orbit and attitude) capabilities for a full spacecraft specific library with tanks, lines, orifices, thrusters, tees. -
1980: Solar Ephemeris Algorithm
UNIVERSITY OF CALIFORNIA, SAN DIEGO SCRIPPS INSTITUTION OF OCEANOGRAPHY VISIBILITY LABORATORY LA JOLLA, CALIFORNIA 92093 SOLAR EPHEMERIS ALGORITHM WAYNE H. WILSON SIO Ref. 80-13 July 1980 Supported by U.S. Department of Commerce National Oceanic and Atmospheric Administration Grant No. GR-04-6-158-44033 Approved: Approved: \KOWJJM) (jjJJ&^ Roswell W. Austin, Director William A. Nierenberg, Director Visibility Laboratory Scripps Institution of Oceanography TABLE OF CONTENTS Page 1. INTRODUCTION M 2. THEORY AND CONVENTIONS 2-1 2.1 Celestial Coordinate Systems 2-1 2.1.1 Horizon System 2-2 2.1.2 Hour Angle System 2-2 2.1.3 Right Ascension System 2-3 2.1.4 Ecliptic System „... 2-3 2.2 Coordinate System Conversion 2-4 2.3 Solar Motion in Ecliptic Plane 2-5 2.4 Perturbations of Solar Motion 2-6 2.4.1 General Precession '. 2-6 2.4.2 Nutation , 2-7 2.4.3 Lunar Perturbations 2-7 2.4.4 Planetary Perturbations 2-7 2.5 Aberration _ 2-7 2.6 Refraction 2-8 2.7 Parallax ; 2-9 2.8 Systems of Time Measurement 2-9 2.8.1 Ephemeris Time 2-9 2.8.2 Universal Time 2-10 2.9 Date and Time Conventions 2-11 3. ALGORITHM DESCRIPTION 3-1 3.1 Steps 3-1 3.2 Algorithm Accuracy 3-12 3.2.1 Latitude and Longitude 3-12 3.2.2 Time 3-12 3.2.3 Declination 3-12 3.2.4 Right Ascension 3-13 3.2.5 Obliquity and Solar Longitude 3-13 3.2.6 Sample Results 3-14 Hi 4. -
2019 Global Counterspace Capabilities
ABOUT SECURE WORLD FOUNDATION Secure World Foundation (SWF) is a private operating foundation dedicated to the secure and sustainable use of space for the benefit of Earth and all its peoples. SWF engages with academics, policy makers, scientists, and advocates in the space and international affairs communities to support steps that strengthen global space sustainability. It promotes the development of cooperative and effective use of space for the protection of Earth’s environment and human security. Global Counterspace Capabilities: An Open Source Assessment i ABOUT THE EDITORS Dr. Brian Weeden is the Director of Program Planning for Secure World Foundation and has nearly two decades of professional experience in space operations and policy. Dr. Weeden directs strategic planning for future-year projects to meet the Foundation's goals and objectives, and conducts research on space debris, global space situational awareness, space traffic management, protection of space assets, and space governance. Dr. Weeden also organizes national and international workshops to increase awareness of and facilitate dialogue on space security, stability, and sustainability topics. He is a member and former Chair of the World Economic Forum's Global Future Council on Space Technologies, a member of the Advisory Committee on Commercial Remote Sensing (ACCRES) to the National Oceanic and Atmospheric Administration (NOAA), and the Executive Director of the Consortium for Execution of Rendezvous and Servicing Operations (CONFERS). Prior to joining SWF, Dr. Weeden served nine years on active duty as an officer in the United States Air Force working in space and intercontinental ballistic missile (ICBM) operations. As part of U.S.