Appendix: a Selection of Documents1

Total Page:16

File Type:pdf, Size:1020Kb

Appendix: a Selection of Documents1 APPENDIX: A SELECTION OF DOCUMENTS1 1) A letter from Felix Klein to Heinrich von Mühler, the Prussian Minister of Religious, Educational, and Medical Affairs (Minister of Culture).2 Your Excellency, Düsseldorf – December 19, 1870 In a request dated March 7th of this year, I took the liberty of asking for diplomatic recommendations to travel to France and England for the purpose of undertaking a scientific trip. At the same time, I had offered to submit reports on the conditions of mathematics in these countries upon my return. On March 26th, I was fortunate enough to receive a reply from your Excellency (U 7737) to the effect that the diplomatic recommendations in question had been granted to me, and that your Excellency would be pleased to receive reports on the present state of French and English mathematics. Under the prevailing conditions, unfortunately, the trip could not be underta- ken in the way that I intended. My stay in Paris, where I had arrived on April 19th, was suddenly interrupted by the declaration of war on July 16th. I rushed home (Düsseldorf) and, because I was deemed unfit for military service at the moment by the relevant authorities, I joined an association for voluntary medical care, which had meanwhile been established in Bonn. As a member of this association, I spent the period from August 16th to October 2nd, when I was discharged to re- turn home on account of my poor health, in the theater of war. Having only recently recovered, I did not want to make the trip to England because of the time that I had lost. Rather, I have already applied to habilitate in Göttingen and become a Privatdozent of mathematics there, and I intend to move there at the New Year. Given that it is not possible for me to send you reports on French and English mathematics in the way that I intended, I would at least like to enclose a copy of a short report on French mathematics, which I composed together with one of my student friends (Dr. Lie from Christiania), to demonstrate that I had worked along these lines during my stay in Paris. We had prepared this report for the mathema- tical [student] union at the University of Berlin and had sent it to this organization on July 7th. At the same time, allow me to enclose an article, “Sur une certaine famille de courbes et de surfaces,” which my friend Lie and I coauthored. We presented this work to the Académie des Sciences in two sessions, on the 6th and 13th of June, and the Académie published it in its Comptes Rendus. By choosing this publica- 1 The original German documents are published in TOBIES 2019, pp. 495–524. 2 [Stabi] Sammlung Darmstaedter. See also Section 2.6.3. © Springer Nature Switzerland AG 2021 593 R. Tobies, Felix Klein, Vita Mathematica 20, https://doi.org/10.1007/978-3-030-75785-4 594 Appendix: A Selection of Documents tion venue, we hoped to gain deeper insight into the conditions there and to be- come personally acquainted with a large number of French mathematicians, and we succeeded in doing so. Finally, allow me to add that we obtained further results – “Ueber die Haupt- tangenten-Curven der Kummer’schen Fläche vierten Grades mit 16 Knotenpunk- ten” [On the Main Tangent Curves of the Fourth-Degree Kummer Surface with 16 Nodal Points] – and we recently informed Professor Kummer privately about them. At his request, we submitted this work to the Academy of Sciences in Ber- lin, which will publish it in its monthly reports with the date of December 15th. By expressing my deepest thanks to your Excellency for your friendly appro- val of my initial request and by asking for more of your kindness in the future, I remain your Excellency’s most respectfully devoted Dr. Felix Klein. 2) An application submitted by Felix Klein to the Academic Senate of the Univer- sity of Erlangen for funding to improve the collection of the University Library’s mathematical section (November 15, 1872).3 Royal Academic Senate! For the purposes of a mathematician, a small library may be sufficient, but it must be entirely at his disposal, for he must constantly refer to it in the interests of his research and teaching. The mathematical section of the University Library here, however, is unfortunately not in a state that meets even the most modest re- quirements. Allow me to begin by briefly explaining its main lacunae to the Royal Senate. The so-called mathematical section of the University Library consists of ap- proximately 1,200 volumes. A great majority of these, however, is utterly worthless for today’s university purposes because they pertain to engineering, architecture, etc. The smaller minority of genuinely mathematical and related works was not collected according to a uniform principle; rather, chance has played an ever-shifting role in these acquisitions, so that, besides the several works that are worthy of attention, there are also almost unbelievable gaps. Of the works by older authors, for example, the writings of Galileo and New- ton are available almost in their entirety, but the library has only the last three volumes of the new complete edition of Kepler’s works, and it lacks the most im- portant items in its collection of works by Huygens, Euler, and Lagrange. Regarding the collection of mathematical journals, the German ones (to the extent that they should be considered) are all available, but the foreign journals are entirely lacking. This is all the more regrettable because mathematics is a tho- roughly international science, and the progress of a productive mathematician is considerably hindered without him having a universal overview of the findings of others at the same time. In light of the burden that the ongoing acquisition of an 3 [UA Erlangen] Ph. Th. I Pos. 20 V, No. 8. On the context of this application, see Section 3.3. Appendix: A Selection of Documents 595 additional journal represents for the library’s budget, however, I believe that I should limit my requests. My only proposal is that it should subscribe to a French journal which contains up-to-date reports on recent publications: the Bulletin des sciences mathématiques et astronomiques, edited by Darboux. Some time ago, a number of astronomical journals had also been acquired. With the sole exception of the Annalen published by the observatory in Munich, all of them break off at different times without any apparent reason. For example, complete holdings of the Berliner [Astronomisches] Jahrbuch exist from its be- ginning in 1776 to 1861. I suggest that the missing volumes should be purchased and that the subscription to this Jahrbuch should be renewed. As far as recent books are concerned, geometry is relatively the best-repre- sented of the mathematical disciplines, given that a preference for geometry has always been cultivated in Erlangen. Yet it is far from the level of completeness that I would hope for it to achieve over time; in particular, the collection lacks certain handbooks that seem to be suited for providing an introduction to the spe- cial study of geometry. Other branches of mathematics are in part almost entirely unrepresented, and these are hardly unimportant. On mechanics, for example, there is nothing aside from Poisson’s excellent book; likewise, the most important new works on diffe- rential and integral calculus are also lacking; there is nothing to be found on ma- thematical physics, unless there happens to be something useful in the physics section. In these disciplines, it is necessary to create adequate conditions by filling in the discernible gaps, so that the most necessary items are available – failing which constructive instruction is not conceivable at all. I therefore take the liberty of requesting the Royal Academic Senate to apply to the highest authority [the Bavarian Ministry of Culture] for a sum of 350 Gul- den to be allotted from the University’s surplus funds for the purpose of comple- ting the mathematical section of the University Library on the basis of an enclosed cost estimate, the individual items of which are justified in the explanations above. Respectfully and with devotion to the Royal Academic Senate, Felix Klein Professor of Mathematics4 4 Dean Eugen Lommel, a professor of physics known today for the Lommel function and the Lommel differential equation, forwarded Klein’s application with an expert opinion to the Bavarian Ministry of Culture, which granted his request for 350 Gulden ([UA Erlangen] Ph. Th, I. Pos. 20 V. No. 8). – Klein’s abbreviated book titles list (see below) is translated into English; “G” designates a book by a German author or a translation into German; for exam- ple: L. Cremona, Einleitung in eine geometrische Theorie der ebenen Curven (Greifswald: Koch, 1865); Poinsot’s Elemente der Statik, als Lehrbuch für den öffentlichen Unterricht und zum Selbststudium (Berlin: Rücker, 1835); Duhamel, Lehrbuch der reinen Mechanik (Braun- schweig: Vieweg, 1853). 596 Appendix: A Selection of Documents Cost Estimate for Completing the Mathematical Section of the University Library Older Works Kepler’s Collected Works. Vols.1–5 ................................... 25.- Euler. Introductio in analysin ............................................ 5.- Calculus differentialis ............................................. 7.20 Mechanica ............................................................... 6.- Methodus inveniendi lineas curvas ......................... 4.- Lagrange. Mécanique analytique ........................................... 15.- Huygens. Horologium oscillatorium ....................................... 3.- Updating the Journal Collection. Darboux. Bulletin. Two volumes ........................................... 11.- Astronomical Yearbook. Ten volumes G .............. 20.- Geometry. Grassmann. Extension Theory 1, 2 G ........................................... 3.15 Plücker. Analyt. geometr. Developments G ........................... 1.10 Algebraic Curves G .................................................. 1.25 Hesse. Lectures. Space, Planes G ......................................... 4.20 Salmon. Geometry of Planes, of Space G .............................. 9.14 Reye. Geometry of Position G ........................................... 3.- Cremona. Plane Curves G .......................................................
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the finite Twist
    Mechanism and Machine Theory Mechanism and Machine Theory 41 (2006) 41–52 www.elsevier.com/locate/mechmt An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist Jian S. Dai * Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, University of London, Strand, London WC2R2LS, UK Received 5 November 2004; received in revised form 30 March 2005; accepted 28 April 2005 Available online 1 July 2005 Abstract The development of the finite twist or the finite screw displacement has attracted much attention in the field of theoretical kinematics and the proposed q-pitch with the tangent of half the rotation angle has dem- onstrated an elegant use in the study of rigid body displacements. This development can be dated back to RodriguesÕ formulae derived in 1840 with Rodrigues parameters resulting from the tangent of half the rota- tion angle being integrated with the components of the rotation axis. This paper traces the work back to the time when Rodrigues parameters were discovered and follows the theoretical development of rigid body displacements from the early 19th century to the late 20th century. The paper reviews the work from Chasles motion to CayleyÕs formula and then to HamiltonÕs quaternions and Rodrigues parameterization and relates the work to Clifford biquaternions and to StudyÕs dual angle proposed in the late 19th century. The review of the work from these mathematicians concentrates on the description and the representation of the displacement and transformation of a rigid body, and on the mathematical formulation and its progress.
    [Show full text]
  • Geometric Algebras for Euclidean Geometry
    Geometric algebras for euclidean geometry Charles Gunn Keywords. metric geometry, euclidean geometry, Cayley-Klein construc- tion, dual exterior algebra, projective geometry, degenerate metric, pro- jective geometric algebra, conformal geometric algebra, duality, homo- geneous model, biquaternions, dual quaternions, kinematics, rigid body motion. Abstract. The discussion of how to apply geometric algebra to euclidean n-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of cru- cial but largely forgotten themes from 19th century mathematics. We ∗ then introduce the dual projectivized Clifford algebra P(Rn;0;1) (eu- clidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We arXiv:1411.6502v4 [math.GM] 23 May 2016 conclude that euclidean PGA provides a natural transition, both scien- tifically and pedagogically, between vector space models and the more complex and powerful CGA. 1. Introduction Although noneuclidean geometry of various sorts plays a fundamental role in theoretical physics and cosmology, the overwhelming volume of practical science and engineering takes place within classical euclidean space En. For this reason it is of no small interest to establish the best computational model for this space.
    [Show full text]
  • Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
    Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire.
    [Show full text]
  • Pursuit of Genius: Flexner, Einstein, and the Early Faculty at the Institute
    i i i i PURSUIT OF GENIUS i i i i i i i i PURSUIT OF GENIUS Flexner, Einstein,and the Early Faculty at the Institute for Advanced Study Steve Batterson Emory University A K Peters, Ltd. Natick, Massachusetts i i i i i i i i Editorial, Sales, and Customer Service Office A K Peters, Ltd. 5 Commonwealth Road, Suite 2C Natick, MA 01760 www.akpeters.com Copyright ⃝c 2006 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photocopy- ing, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Batterson, Steve, 1950– Pursuit of genius : Flexner, Einstein, and the early faculty at the Institute for Advanced Study / Steve Batterson. p. cm. Includes bibliographical references and index. ISBN 13: 978-1-56881-259-5 (alk. paper) ISBN 10: 1-56881-259-0 (alk. paper) 1. Mathematics–Study and teaching (Higher)–New Jersey–Princeton–History. 2. Institute for Advanced Study (Princeton, N.J.). School of Mathematics–History. 3. Institute for Advanced Study (Princeton, N.J.). School of Mathematics–Faculty. I Title. QA13.5.N383 I583 2006 510.7’0749652--dc22 2005057416 Cover Photographs: Front cover: Clockwise from upper left: Hermann Weyl (1930s, cour- tesy of Nina Weyl), James Alexander (from the Archives of the Institute for Advanced Study), Marston Morse (photo courtesy of the American Mathematical Society), Albert Einstein (1932, The New York Times), John von Neumann (courtesy of Marina von Neumann Whitman), Oswald Veblen (early 1930s, from the Archives of the Institute for Advanced Study).
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective Conference or Workshop Item How to cite: Barrow-Green, June; Ponce Dawson, Silvina and Roy, Marie-Françoise (2019). The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective. In: Proceedings of the International Congress of Mathematicians - 2018 (Sirakov, Boyan; Ney de Souza, Paulo and Viana, Marcelo eds.), World Scientific, pp. 1073–1092. For guidance on citations see FAQs. c [not recorded] https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1142/11060 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk P. I. C. M. – 2018 Rio de Janeiro, Vol. (1073–1068) 1 THE GENDER GAP IN MATHEMATICAL AND NATURAL 2 SCIENCES FROM A HISTORICAL PERSPECTIVE 3 J B-G, S P D M-F R 4 5 Abstract 6 The panel organised by the Committee for Women in Mathematics (CWM) 7 of the International Mathematical Union (IMU) took place at the International nd 8 Congress of Mathematicians (ICM) on August 2 , 2018. It was attended by about 9 190 people, with a reasonable gender balance (1/4 men, 3/4 women). The panel was 10 moderated by Caroline Series, President of the London Mathematical Society and 11 Vice-Chair of CWM.
    [Show full text]
  • Sitzungsberichte Der Mathematisch- Physikalischen Klasse Der Bayerischen Akademie Der Wissenschaften München
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sitzungsberichte der mathematisch- physikalischen Klasse der Bayerischen Akademie der Wissenschaften München Jahr/Year: 1986 Band/Volume: 1985 Autor(en)/Author(s): Biermann Ludwig F. B., Grigull Ulrich Artikel/Article: Fünfzig Jahre Kepler-Kommission 50 Jahre Kepler- Kommission 23-31 BAYERISCHE AKADEMIE DER WISSENSCHAFTEN MATHEMATISCH-NATURWISSENSCHAFTLICHE KLASSE SITZUNGSBERICHTE JAHRGANG 1985 MÜNCHEN 1986 VERLAG DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN In Kommission bei der C.H. Beck’schen Verlagsbuchhandlung München 50 Jahre Kepler-Kommission Ludwig F. B. Biermannt und Ulrich Grigull Vorgetragen auf der Gedenkfeier der Kepler-Kommission am 15. Juli 1985 Die Aktivitäten der Bayerischen Akademie der Wissenschaften zur Herausgabe der Werke von Johannes Kepler haben ihren Ursprung darin, daß das Akademiemitglied Walther von Dyck (*1856 in Mün- chen) sich mit Kepler zu beschäftigen begann, vermutlich auf Anre- gung seines Freundes Oskar von Miller. Schon Anfang desjahrhun- derts war Walther von Dyck von Oskar von Miller um einen Vor- trag über Johannes Kepler gebeten worden und hatte bei den Vorbe- reitungen dazu festgcstcllt, daß ein großer Teil der Schriften Keplers in der einzigen damals existierenden Ausgabe der Gesammelten Wer- ke - welche der württcmbcrgische Gelehrte Christian Frisch zwi- schen 1858 und 1871 besorgt hatte - nicht berücksichtigt war. Wal- ther von Dyck begann, Keplers Manuskripte systematisch zu sam- meln; als erstes Ergebnis erschienen 1910 unter den Abhandlungen der mathematisch-naturwissenschaftlichen Klasse unserer Akademie zwei wieder aufgefundene Prognostika auf diejahre 1604 und 1624, die Walther von Dyck am 5. November 1910 der Klasse vorlegte und die auch noch im gleichen Jahr gedruckt wurden.
    [Show full text]
  • Mendelssohn Studien
    3 MENDELSSOHN STUDIEN Beiträge zur neueren deutschen Kulturgeschichte Band 19 Herausgegeben für die Mendelssohn-Gesellschaft von Roland Dieter Schmidt-Hensel und Christoph Schulte Wehrhahn Verlag 4 Bibliograische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliograie; detaillierte bibliograische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. 1. Aulage 2015 Wehrhahn Verlag www.wehrhahn-verlag.de Satz und Gestaltung: Wehrhahn Verlag Umschlagabbildung: Fromet Mendelssohn. Reproduktion einer verschollenen Miniatur aus dem Jahr 1767 Druck und Bindung: Beltz Bad Langensalza GmbH Alle Rechte vorbehalten Printed in Germany © by Wehrhahn Verlag, Hannover ISSN 0340–8140 ISBN 978–3–86525–469–6 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin 295 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin Geschichte und Bestände 1965–2015 Von Roland Dieter Schmidt-Hensel Die Musikabteilung der Staatsbibliothek zu Berlin – Preußischer Kulturbesitz verwahrt nicht nur eine der weltweit größten und bedeutendsten Sammlungen von Musikautographen und -abschriften, Musikerbriefen und -nachlässen so- wie gedruckten Notenausgaben, sondern besitzt mit dem Mendelssohn-Archiv auch eine der wichtigsten Sammelstätten für Handschriften, Briefe und son- stige Originaldokumente aus der und über die gesamte Familie Mendelssohn weit über die drei Komponisten der Familie – Felix Mendelssohn Bartholdy, Fanny Hensel und Arnold Ludwig Mendelssohn – hinaus. Den Grundstock dieses Mendelssohn-Archivs bildet eine umfangreiche Sammlung, die Hugo von Mendelssohn Bartholdy (1894–1975), Urenkel und letzter namenstragen- der Nachfahre des Komponisten Felix, aufgebaut hatte und 1964 als Schen- kung der Stiftung Preußischer Kulturbesitz übereignete, wo sie der Musikab- teilung der Staatsbibliothek angegliedert wurde. Mit dieser Schenkung stellte sich Hugo von Mendelssohn Bartholdy in die Tradition früherer Generationen seiner Familie, die sich im 19.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Definitions and Nondefinability in Geometry 475 2
    Definitions and Nondefinability in Geometry1 James T. Smith Abstract. Around 1900 some noted mathematicians published works developing geometry from its very beginning. They wanted to supplant approaches, based on Euclid’s, which han- dled some basic concepts awkwardly and imprecisely. They would introduce precision re- quired for generalization and application to new, delicate problems in higher mathematics. Their work was controversial: they departed from tradition, criticized standards of rigor, and addressed fundamental questions in philosophy. This paper follows the problem, Which geo- metric concepts are most elementary? It describes a false start, some successful solutions, and an argument that one of those is optimal. It’s about axioms, definitions, and definability, and emphasizes contributions of Mario Pieri (1860–1913) and Alfred Tarski (1901–1983). By fol- lowing this thread of ideas and personalities to the present, the author hopes to kindle interest in a fascinating research area and an exciting era in the history of mathematics. 1. INTRODUCTION. Around 1900 several noted mathematicians published major works on a subject familiar to us from school: developing geometry from the very beginning. They wanted to supplant the established approaches, which were based on Euclid’s, but which handled awkwardly and imprecisely some concepts that Euclid did not treat fully. They would present geometry with the precision required for general- ization and applications to new, delicate problems in higher mathematics—precision beyond the norm for most elementary classes. Work in this area was controversial: these mathematicians departed from tradition, criticized previous standards of rigor, and addressed fundamental questions in logic and philosophy of mathematics.2 After establishing background, this paper tells a story about research into the ques- tion, Which geometric concepts are most elementary? It describes a false start, some successful solutions, and a demonstration that one of those is in a sense optimal.
    [Show full text]
  • Chronological List of Correspondence, 1895–1920
    CHRONOLOGICAL LIST OF CORRESPONDENCE, 1895–1920 In this chronological list of correspondence, the volume and document numbers follow each name. Documents abstracted in the calendars are listed in the Alphabetical List of Texts in this volume. 1895 13 or 20 Mar To Mileva Maric;;, 1, 45 29 Apr To Rosa Winteler, 1, 46 Summer To Caesar Koch, 1, 6 18 May To Rosa Winteler, 1, 47 28 Jul To Julia Niggli, 1, 48 Aug To Rosa Winteler, 5: Vol. 1, 48a 1896 early Aug To Mileva Maric;;, 1, 50 6? Aug To Julia Niggli, 1, 51 21 Apr To Marie Winteler, with a 10? Aug To Mileva Maric;;, 1, 52 postscript by Pauline Einstein, after 10 Aug–before 10 Sep 1,18 From Mileva Maric;;, 1, 53 7 Sep To the Department of Education, 10 Sep To Mileva Maric;;, 1, 54 Canton of Aargau, 1, 20 11 Sep To Julia Niggli, 1, 55 4–25 Nov From Marie Winteler, 1, 29 11 Sep To Pauline Winteler, 1, 56 30 Nov From Marie Winteler, 1, 30 28? Sep To Mileva Maric;;, 1, 57 10 Oct To Mileva Maric;;, 1, 58 1897 19 Oct To the Swiss Federal Council, 1, 60 May? To Pauline Winteler, 1, 34 1900 21 May To Pauline Winteler, 5: Vol. 1, 34a 7 Jun To Pauline Winteler, 1, 35 ? From Mileva Maric;;, 1, 61 after 20 Oct From Mileva Maric;;, 1, 36 28 Feb To the Swiss Department of Foreign Affairs, 1, 62 1898 26 Jun To the Zurich City Council, 1, 65 29? Jul To Mileva Maric;;, 1, 68 ? To Maja Einstein, 1, 38 1 Aug To Mileva Maric;;, 1, 69 2 Jan To Mileva Maric;; [envelope only], 1 6 Aug To Mileva Maric;;, 1, 70 13 Jan To Maja Einstein, 8: Vol.
    [Show full text]
  • Mathematics in the Austrian-Hungarian Empire
    Mathematics in the Austrian-Hungarian Empire Christa Binder The appointment policy in the Austrian-Hungarian Empire In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 43–54. Persistent URL: http://dml.cz/dmlcz/400817 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz THE APPOINTMENT POLICY IN THE AUSTRIAN- -HUNGARIAN EMPIRE CHRISTA BINDER Abstract: Starting from a very low level in the mid oft the 19th century the teaching and research in mathematics reached world wide fame in the Austrian-Hungarian Empire before World War One. How this was complished is shown with three examples of careers of famous mathematicians. 1 Introduction This symposium is dedicated to the development of mathematics in the Austro- Hungarian monarchy in the time from 1850 to 1914. At the beginning of this period, in the middle of the 19th century the level of teaching and researching mathematics was very low – with a few exceptions – due to the influence of the jesuits in former centuries, and due to the reclusive period in the first half of the 19th century. But even in this time many efforts were taken to establish a higher education.
    [Show full text]