Blackstone State Park to Pratt Dam – Intermediate Tours, Rhode Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flooding the Missouri Valley the Politics of Dam Site Selection and Design
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Quarterly Great Plains Studies, Center for Summer 1997 Flooding The Missouri Valley The Politics Of Dam Site Selection And Design Robert Kelley Schneiders Texas Tech University Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsquarterly Part of the Other International and Area Studies Commons Schneiders, Robert Kelley, "Flooding The Missouri Valley The Politics Of Dam Site Selection And Design" (1997). Great Plains Quarterly. 1954. https://digitalcommons.unl.edu/greatplainsquarterly/1954 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Quarterly by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FLOODING THE MISSOURI VALLEY THE POLITICS OF DAM SITE SELECTION AND DESIGN ROBERT KELLEY SCHNEIDERS In December 1944 the United States Con Dakota is 160 feet high and 10,700 feet long. gress passed a Rivers and Harbors Bill that The reservoir behind it stretches 140 miles authorized the construction of the Pick-Sloan north-northwest along the Missouri Valley. plan for Missouri River development. From Oahe Dam, near Pierre, South Dakota, sur 1946 to 1966, the United States Army Corps passes even Fort Randall Dam at 242 feet high of Engineers, with the assistance of private and 9300 feet long.! Oahe's reservoir stretches contractors, implemented much of that plan 250 miles upstream. The completion of Gar in the Missouri River Valley. In that twenty rison Dam in North Dakota, and Oahe, Big year period, five of the world's largest earthen Bend, Fort Randall, and Gavin's Point dams dams were built across the main-stem of the in South Dakota resulted in the innundation Missouri River in North and South Dakota. -
Policy for Dam Safety and Geotechnical Mining Structures
Policy for Dam Safety and Geotechnical Mining Structures DCA 108/2020 Rev.: 00 – 08/10/2020 Nº: POL-0037- G PUBLIC Objective: To establish guidance and commitments for the Safe Management of Dams and Geotechnical Mining Structures such that critical assets are controlled as well as to deal with the risk controls associated with the implemented Management Systems. Aplicação: This Policy applies to Vale and its 100% controlled subsidiaries. It must be reproduced for its direct and indirect subsidiaries, within Brazil and overseas, always in compliance to the articles of incorporation and the applicable legislation. Its adoption is encouraged at other entities in which Vale has a shareholding interest, in Brazil and overseas. References: • POL-0001-G – Code of Conduct • POL-0009-G – Risk Management Policy • POL-0019-G – Sustainability Policy • ABNT NBR ISO 9001:2015 – Sistema de Gestão da Qualidade (SGQ). • Technical Bulletin – Application of Dam Safety Guidelines to Mining Dams from the Canadian Dams Association (CDA). • Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure from the Australian Committee on Large Dams (ANCOLD). • Tailings Dam Safety Bulletin from the International Committee on Large Dams (ICOLD). • Guide to the Management of Tailings Facilities & Developing an Operation, Maintenance, and Surveillance. • Manual for Tailings and Water Management Facilities (the OMS Guide) from the Mining Association of Canada (MAC). • Global Industry Standard on Tailings Management (GISTM) from the Global Tailings Review (ICMM-UNEP-PRI) & Tailings Management: Good Practice Guides from the International Council on Mining and Metals (ICMM). • Slope Design Guidelines for Large Open Pit Project (LOP) from the Commonwealth Scientific and Industrial Research Organization (CSIRO da Australia). -
Good and Bad Dams
Latin America and Caribbean Region 1 Sustainable Development Working Paper 16 Public Disclosure Authorized Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 Public Disclosure Authorized Public Disclosure Authorized George Ledec Public Disclosure Authorized Juan David Quintero The World Bank Latin America and Caribbean Region Environmentally and Socially Sustainable Development Department (LCSES) Latin America and the Caribbean Region Sustainable Development Working Paper No. 16 Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 George Ledec Juan David Quintero The World Bank Latin America and the Caribbean Region Environmentally and Socially Sustainable Development Sector Management Unit George Ledec has worked with the World Bank since 1982, and is presently Lead Ecologist for the Environmen- tally and Socially Sustainable Development Unit (LCSES) of the World Bank’s Latin America and Caribbean Re- gional Office. He specializes in the environmental assessment of development projects, with particular focus on biodiversity and related conservation concerns. He has worked extensively with the environmental aspects of dams, roads, oil and gas, forest management, and protected areas, and is one of the main authors of the World Bank’s Natural Habitats Policy. Dr. Ledec earned a Ph.D. in Wildland Resource Science from the University of California-Berkeley, a Masters in Public Affairs from Princeton University, and a Bachelors in Biology and Envi- ronmental Studies from Dartmouth College. Juan David Quintero joined the World Bank in 1993 and is presently Lead Environmental Specialist for LCSES and Coordinator of the Bank’s Latin America and Caribbean Quality Assurance Team, which monitors compli- ance with environmental and social safeguard policies. -
View Strategic Plan
SURGING TOWARD 2026 A STRATEGIC PLAN Strategic Plan / introduction • 1 One valley… One history… One environment… All powered by the Blackstone River watershed and so remarkably intact it became the Blackstone River Valley National Heritage Corridor. SURGING TOWARD 2026 A STRATEGIC PLAN CONTENTS Introduction ............................................................ 2 Blackstone River Valley National Heritage Corridor, Inc. (BHC), ................................................ 3 Our Portfolio is the Corridor ............................ 3 We Work With and Through Partners ................ 6 We Imagine the Possibilities .............................. 7 Surging Toward 2026 .............................................. 8 BHC’s Integrated Approach ................................ 8 Assessment: Strengths & Weaknesses, Challenges & Opportunities .............................. 8 The Vision ......................................................... 13 Strategies to Achieve the Vision ................... 14 Board of directorS Action Steps ................................................. 16 Michael d. cassidy, chair Appendices: richard gregory, Vice chair A. Timeline ........................................................ 18 Harry t. Whitin, Vice chair B. List of Planning Documents .......................... 20 todd Helwig, Secretary gary furtado, treasurer C. Comprehensive List of Strategies donna M. Williams, immediate Past chair from Committees ......................................... 20 Joseph Barbato robert Billington Justine Brewer Copyright -
Be Aware of Potential Risk of Dam Failure in Your Community
Be Aware of Potential Risk of Dam Failure in Your Community Approximately 15,000 dams in the United States are classified as high-hazard potential (HHP), meaning that their failure could result in loss of life. Dams can fail for a number of reasons, including overtopping caused by floods, acts of sabotage, or structural failure of materials used in dam construction. The worst dam failure in the United States occurred in 1889 in Johnstown, Pennsylvania. Over 2,200 died, with many more left homeless. Dams present risks but they also provide many benefits, including irrigation, flood control, and recreation. Dams have been identified as a key resource of our national infrastructure that is vulnerable to terrorist attack. States have the primary responsibility for protecting their populations from dam failure. Of the approximately 94,400 dams in the United States, State governments regulate about 70 percent. About 27,000 dams throughout our Nation could incur damage or fail, resulting in significant property damage, lifeline disruption (utilities), business disruption, displacement of families from their homes, and environmental damage. The most important steps you can take to protect yourself from dam failure are to know your risk. Contact government offices to learn if an Emergency Action Plan (EAP) is in place and to evacuate when directed by emergency response officials. An EAP is a formal document that identifies potential emergency conditions at a dam and specifies preplanned actions to be followed by the dam owner to reduce property damage and loss of life. The plan may save lives and property damage through timely evacuations of those who live, work, or enjoy recreation near a high-hazard potential dam. -
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics GEL 230 – Ecogeomorphology University of California, Davis Derek Roberts March 2nd, 2016 Abstract: At the upstream end of the Grand Canyon, the Glen Canyon Dam has changed the Colorado River from a run-of-the-river flow to a deep, summer-stratified reservoir. This change in flow regime significantly alters the temperature regime of the Colorado River. Seasonal temperature variation, once ranging from near to almost , is now limited to 7 . The lack of warm summer temperatures has prevented spawning of endangered 0℃ 30℃ humpback chub in the Colorado River. Implementation of a temperature control device, to − 14℃ allow for warmer summer releases to mitigate negative temperature effects on endangered fish, was considered by the federal government. Ultimately, this proposal was put on indefinite hold by the Bureau of Reclamation and U.S. Fish and Wildlife Service due to concerns of cost and unintended ecological consequences. The low-variability of the current dam-induced Colorado River temperature regime will continue into the foreseeable future. Agencies are reviewing humpback chub conservation efforts outside of temperature control. Keywords: Colorado River, Grand Canyon, Glen Canyon Dam, thermal dynamics 1.0 Introduction Temperature in natural water bodies is a primary driver of both ecological and physical processes. Freshwater plant and animal metabolisms are heavily affected by temperature (Coulter 2014). Furthermore, the thermal structure of a water body has significant impacts on the physical processes that drive ecosystem function (Hodges et al 2000); fluid dynamics drive transport of nutrients, oxygen, and heat. Human action, often the introduction of dams or industrial cooling systems, can alter the natural thermal regimes of rivers and lakes leading to reverberating impacts throughout associated ecosystems. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
Metropolitan Boston Downtown Boston
WELCOME TO MASSACHUSETTS! CONTACT INFORMATION REGIONAL TOURISM COUNCILS STATE ROAD LAWS NONRESIDENT PRIVILEGES Massachusetts grants the same privileges EMERGENCY ASSISTANCE Fire, Police, Ambulance: 911 16 to nonresidents as to Massachusetts residents. On behalf of the Commonwealth, MBTA PUBLIC TRANSPORTATION 2 welcome to Massachusetts. In our MASSACHUSETTS DEPARTMENT OF TRANSPORTATION 10 SPEED LAW Observe posted speed limits. The runs daily service on buses, trains, trolleys and ferries 14 3 great state, you can enjoy the rolling Official Transportation Map 15 HAZARDOUS CARGO All hazardous cargo (HC) and cargo tankers General Information throughout Boston and surrounding towns. Stations can be identified 13 hills of the west and in under three by a black on a white, circular sign. Pay your fare with a 9 1 are prohibited from the Boston Tunnels. hours travel east to visit our pristine MassDOT Headquarters 857-368-4636 11 reusable, rechargeable CharlieCard (plastic) or CharlieTicket 12 DRUNK DRIVING LAWS Massachusetts enforces these laws rigorously. beaches. You will find a state full (toll free) 877-623-6846 (paper) that can be purchased at over 500 fare-vending machines 1. Greater Boston 9. MetroWest 4 MOBILE ELECTRONIC DEVICE LAWS Operators cannot use any of history and rich in diversity that (TTY) 857-368-0655 located at all subway stations and Logan airport terminals. At street- 2. North of Boston 10. Johnny Appleseed Trail 5 3. Greater Merrimack Valley 11. Central Massachusetts mobile electronic device to write, send, or read an electronic opens its doors to millions of visitors www.mass.gov/massdot level stations and local bus stops you pay on board. -
The Effects of Glen Canyon Dam on the Colorado River
THE EFFECTS OF GLEN CANYON DAM ON THE COLORADO RIVER. by Margaret Gebren A SENIOR THESIS m GENERAL STUDIES Submitted to the General Studies Council in the College of Arts and Sciences at Texas Tech University in Partial fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Dr. JeffLee Depal'tmenr of Economics and Geography Co-Chair of Thesis Committee Dr. Rob Mitchell Department of R WFM Co-Chair of Thesis Committee ----~~------- Dr. Dale Davis Director of General Studies May 1999 /ILZ ''55< ' / 7 3 ACKNOWLEDGMENTS I wish to express my deep gratitude to Dr. Lee and Dr. Mitchell for taking time out to read and critique my work and also for their commitment to teaching, which is greatly underrated. Thanks also to my family, for graciously correcting my grammar and spelling all these years! TABLE OF CONTENTS ACKNOWLEDGMENTS ii CHAPTER I. INTRODUCTION 1 II. HISTORY OF THE DAM 4 III. LIFE BEFORE THE DAM 7 IV. FORMATION OF THE GRAND CANYON 9 V. LIFE AFTER THE DAM 14 Lake Powell 14 Water Releases 15 Rapids 16 Sand and Sediment 16 Vegetation 17 Backwaters 18 Water Chemistry and Temperature 18 Heavy Metals 19 Salinity 20 Endangered Species 21 VI. THE PLAN 24 VII. THE EXPERIEMENT 27 VIII. RESULTS 30 Sandbars and Sediment Transportation 30 Rapids 31 ni Camping Beaches 31 Backwater Habitats 32 Geochemistry 33 Fisheries 33 Riparian Vegetation and Resources 34 Cultural Resources 34 IX. CONCLUSIONS 35 BIBLIOGRAPHY 36 IV CHAPTER 1 INTRODUCTION Mankind has become so used to controlling nature that we often forget or over-look the consequences of our handiwork. -
SBIRT Spring 11 Newsletter
Massachusetts Department of Public Health Massachusetts SBIRT News Spring 2011, Issue 2 Screening, Brief Intervention, Referral and Treatment (SBIRT) In This Issue SAVE THE DATE And Register Now - MASBIRT - BNI-ART Institute May 20, 2011 - CeASAR Update - School Based Health Centers - Meetings & Resources In this era of healthcare reform, parity, payment reform, service integration, and an uncertain economic landscape, the field of addictions must focus, now SBIRT Web Page on more than ever, on new and innovative strategies to survive. Mass.gov This event will highlight new and emerging innovations in addiction preven- tion, intervention, treatment, research and recovery in Massachusetts. Four Points Sheraton Norwood, Norwood, MA To learn more and to register: Click here ENA SBIRT Mentorship Project The Emergency Nurses Association has established a regional mentorship network to: • Facilitate nurse-delivered alcohol SBIRT in emergency departments; and • Increase the number of emergency departments that implement alcohol SBIRT. Toll Free Helpline # Regional SBIRT mentors will guide participating facilities around the country through 1-800-327-5050 the process of implementing SBIRT. TTY (Toll Free): Our Massachusetts Regional Mentor , Deb DiBartolo, BSN, RN, CEN, CPEN, SANE-A, 1-888-448-8321 SANE-P is Nursing Supervisor at Cayuga Medical Center in upstate New York and looks forward to work with interested facilities here in Massachusetts. www.helpline-online.com Continue on Page 3 MASBIRTMASBIRT Massachusetts Screening, Brief Intervention, Referral and Treatment The MASBIRT program continues to provide universal screening for unhealthy 17 trained Health Promotion alcohol and drug use, on-site brief intervention counseling and facilitated Advocates (HPAs) perform addiction treatment referrals in general healthcare settings. -
Palynological Evidence for Gradual Vegetation and Climate Changes During the African Humid Period Termination at 13◦ N from a Mega-Lake Chad Sedimentary Sequence
Clim. Past, 9, 223–241, 2013 www.clim-past.net/9/223/2013/ Climate doi:10.5194/cp-9-223-2013 of the Past © Author(s) 2013. CC Attribution 3.0 License. Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13◦ N from a Mega-Lake Chad sedimentary sequence P. G. C. Amaral1, A. Vincens1, J. Guiot1, G. Buchet1, P. Deschamps1, J.-C. Doumnang2, and F. Sylvestre1 1CEREGE, Aix-Marseille Universite,´ CNRS, IRD, College` de France, Europoleˆ Mediterran´ een´ de l’Arbois, BP 80, 13545 Aix-en-Provence cedex 4, France 2Departement´ des Sciences de la Terre, Universite´ de N’Djamena (UNDT) BP 1027 N’Djamena, Chad Correspondence to: P. G. C. Amaral ([email protected]) Received: 16 May 2012 – Published in Clim. Past Discuss.: 18 June 2012 Revised: 18 December 2012 – Accepted: 19 December 2012 – Published: 29 January 2013 Abstract. Located at the transition between the Saharan and period. However, we cannot rule out that an increase of Sahelian zones, at the center of one of the largest endorheic the Chari–Logone inputs into the Mega-Lake Chad might basins, Lake Chad is ideally located to record regional envi- have also contributed to control the abundance of these taxa. ronmental changes that occurred in the past. However, until Changes in the structure and floristic composition of the veg- now, no Holocene archive was directly cored in this lake. etation towards more open and drier formations occurred In this paper, we present pollen data from the first sed- after ca. 6050 cal yr BP, following a decrease in mean Pann imentary sequence collected in Lake Chad (13◦ N; 14◦ E; estimates to approximately 600 (−230/+600) mm. -
Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: a Multicriteria Approach
water Article Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: A Multicriteria Approach Emmanouil Psomiadis 1,* , Lefteris Tomanis 2, Antonis Kavvadias 1, Konstantinos X. Soulis 1 , Nikos Charizopoulos 1 and Spyros Michas 2 1 Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; [email protected] (A.K.); [email protected] (K.X.S.); [email protected] (N.C.) 2 Hydroexigiantiki Consulting Engineers, Evias 3, 15125 Athens, Greece; [email protected] (L.T.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +30-210-529-4156 Abstract: Dam breach has disastrous consequences for the economy and human lives. Floods are one of the most damaging natural phenomena, and some of the most catastrophic flash floods are related to dam collapses. The goal of the present study is to analyse the impact of a possible failure–collapse on a potentially affected area downstream of the existing Bramianos dam on southern Crete Island. HEC-RAS hydraulic analysis software was used to study the dam breach, the flood wave propagation, and estimate the extent of floods. The analysis was performed using two different relief datasets of the same area: a digital elevation model (DEM) taken from very high-resolution orthophoto images (OPH) of the National Cadastre and Mapping Agency SA and a detailed digital surface model (DSM) Citation: Psomiadis, E.; Tomanis, L.; extracted from aerial images taken by an unmanned aerial vehicle (UAV). Remote sensing data of Kavvadias, A.; Soulis, K.X.; the Sentinel-2 satellite and OPH were utilised to create the geographic information system (GIS) Charizopoulos, N.; Michas, S.