Assessing the Consequences of Dam Failures. a How-To Guide

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Consequences of Dam Failures. a How-To Guide This document was prepared by Risk Assessment, Mapping, and Planning Partners 8401 Arlington Boulevard Fairfax, Virginia 22031 Table of Contents ACRONYMS AND ABBREVIATIONS ................................................................................ iii SECTION ONE INTRODUCTION ..............................................................................................1-1 1.1 What This Guide Provides.................................................................... 1-1 1.2 Purpose of This Guide .......................................................................... 1-1 1.3 Limitations of the Guide....................................................................... 1-1 1.4 Audience for This Guide....................................................................... 1-2 1.5 How This Guide Is Organized .............................................................. 1-2 1.6 Further Application of Recommended Procedures ................................ 1-3 SECTION TWO OVERVIEW OF ASSESSMENT METHODOLOGY ...........................2-1 2.1 Define the Inundation Area................................................................... 2-1 2.2 Create an Inventory of Assets ............................................................... 2-1 2.3 Estimate the Potential Consequences .................................................... 2-1 2.4 Determine the Impacts.......................................................................... 2-1 2.5 Limitations of the Recommended Approach ......................................... 2-2 SECTION THREE DEFINE DAM FAILURE SCENARIO ......................................................3-1 3.1 Characteristics of the Dam.................................................................... 3-1 3.2 Dam Failure Scenario ........................................................................... 3-1 3.3 Community .......................................................................................... 3-1 SECTION FOUR IDENTIFY INUNDATION AREA ...............................................................4-1 4.1 Methods for identifying inundation area ............................................... 4-1 4.2 Guidelines for conducting a Hydrologic and Hydraulic study ............... 4-1 4.3 Importance of Depth and Velocity ........................................................ 4-2 SECTION FIVE INVENTORY ASSETS.....................................................................................5-1 5.1 Economic, Social, and Environmental Assets ....................................... 5-1 5.2 Critical Infrastructure and Resources .................................................... 5-4 SECTION SIX IDENTIFY CONSEQUENCES .....................................................................6-1 6.1 Determine Anticipated Level of Damage .............................................. 6-1 6.2 Determine Potential for Loss of Life..................................................... 6-2 6.3 Determine other Potential Consequences .............................................. 6-6 SECTION SEVEN ASSESS CONSEQUENCES ...........................................................................7-1 7.1 Economic Impacts ................................................................................ 7-1 7.2 Social Impacts ...................................................................................... 7-9 7.3 Environmental Impacts........................................................................7-11 SECTION EIGHT IDENTIFY FOLLOW-UP ACTIVITIES ...................................................8-1 SECTION NINE SOURCES OF INFORMATION ..................................................................9-1 FIGURES Figure 1: Assessment Process.................................................................................................. 2-2 Figure 2: Inundation Area for Example Scenario ..................................................................... 5-4 i Table of Contents TABLES Table 1: Assets in the Inundation Area .................................................................................... 5-3 Table 2: Critical Infrastructure and Resources Beyond the Inundation Area ............................ 5-5 Table 3: Anticipated Level of Damage .................................................................................... 6-2 Table 4: Occupancy of Inundation Area .................................................................................. 6-4 Table 5: Method for Estimating Loss of Life ........................................................................... 6-5 Table 6: Anticipated Consequences of Dam Failure ................................................................ 6-6 Table 7: Anticipated Consequences for Critical Infrastructure and Resources Beyond the Inundation Area ...................................................................................................... 6-7 Table 8: Potential Economic Impacts Steps 1 through 3 .......................................................... 7-2 Table 9: Potential Economic Impacts Steps 4 through 7 .......................................................... 7-4 Table 10: Potential Economic Impacts Steps 8 through 11....................................................... 7-5 Table 11: Potential Economic Impacts Steps 12 through 15..................................................... 7-6 Table 12: Potential Economic Impacts Steps 16 and 17 ........................................................... 7-7 Table 13: Potential Social Impacts .........................................................................................7-10 Table 14: Potential Economic and Social Impacts for Critical Infrastructure and Resources...............................................................................................................7-11 Table 15: Environmental Impacts...........................................................................................7-12 Table 16: Potential Environmental Impacts for Critical Infrastructure and Resources .............7-13 APPENDICES Appendix A Assets Worksheet Appendix B Critical Infrastructure and Resources Worksheet ii Acronyms and Abbreviations EAP Emergency Action Plan FEMA Federal Emergency Management Agency FIRM Flood Insurance Rate Map GIS Geographic Information System H&H Hydrologic and Hydraulic Hazus-MH Hazards U.S. – Multi-Hazard (Software) NFIP National Flood Insurance Program PMP Probable Maximum Precipitation USACE U.S. Army Corps of Engineer USDA U.S. Department of Agriculture iii This page intentionally left blank. iv Introduction SECTION ONE INTRODUCTION 1.1 WHAT THIS GUIDE PROVIDES The Federal Emergency Management Agency (FEMA) developed Assessing the Consequences of Dam Failure: A How-To Guide to provide community officials and interested stakeholders with a process for assessing the potential economic, social, and environmental impacts of dam failure. For this guide, the word dam is defined as any barrier, wall, or embankment, along with its abutments and appurtenant works, constructed for the purpose of storing water or other liquid material either temporarily or permanently. The term dam failure means that the dam is overtopped or fails to operate in the manner for which it was designed. This may include catastrophic failure whereby a breach would allow the dam’s reservoir to suddenly drain. Failure may also refer to a dam’s inability to operate correctly resulting in uncontrolled releases; for example, a dam with a flood pool that cannot be used because of structural concerns could increase flooding downstream during storm events. Dam failure can occur with little to no warning, or it may be an anticipated event. This guide presents an analytical method particularly appropriate for a community-level examination of the potential damage posed by the tens of thousands of dams in the United States. Information developed as a result of the assessment can be included in the description of potential impacts of a dam failure hazard in a local hazard mitigation plan or Emergency Operation Plan. 1.2 PURPOSE OF THIS GUIDE The purpose of this guide is to outline a procedure for identifying and assessing the potential consequences of dam failure at the community level using readily available information. A good assessment will establish the potential short- and long-term economic, social, and environmental effects of dam failure that will inform planning efforts. 1.3 LIMITATIONS OF THE GUIDE This guide provides information for a cursory assessment of the potential consequences of dam failure. Some investment of time and resources is required to conduct the assessment. Communities can use available resources, which can vary from paper maps and tax assessor records to the results of hydrologic and hydraulic (H&H) studies or geographic information system (GIS) data. Limitations include: The consequence assessment methodology described in this guide does not address the probability of a dam failure. Dam failure is typically considered a low-probability, high- consequence event. FEMA encourages the determination of consequences regardless of the probability of dam failure. 1-1 Introduction The consequence assessment methodology is not a substitute for detailed engineering or academic analyses. Therefore, the results should not be considered sufficient for use in a benefit-cost analysis of mitigation or rehabilitation measures. This guide does not provide all of the information necessary for developing an Emergency Action Plan (EAP). An EAP is typically developed by dam owners and outlines procedures
Recommended publications
  • Flooding the Missouri Valley the Politics of Dam Site Selection and Design
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Quarterly Great Plains Studies, Center for Summer 1997 Flooding The Missouri Valley The Politics Of Dam Site Selection And Design Robert Kelley Schneiders Texas Tech University Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsquarterly Part of the Other International and Area Studies Commons Schneiders, Robert Kelley, "Flooding The Missouri Valley The Politics Of Dam Site Selection And Design" (1997). Great Plains Quarterly. 1954. https://digitalcommons.unl.edu/greatplainsquarterly/1954 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Quarterly by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FLOODING THE MISSOURI VALLEY THE POLITICS OF DAM SITE SELECTION AND DESIGN ROBERT KELLEY SCHNEIDERS In December 1944 the United States Con­ Dakota is 160 feet high and 10,700 feet long. gress passed a Rivers and Harbors Bill that The reservoir behind it stretches 140 miles authorized the construction of the Pick-Sloan north-northwest along the Missouri Valley. plan for Missouri River development. From Oahe Dam, near Pierre, South Dakota, sur­ 1946 to 1966, the United States Army Corps passes even Fort Randall Dam at 242 feet high of Engineers, with the assistance of private and 9300 feet long.! Oahe's reservoir stretches contractors, implemented much of that plan 250 miles upstream. The completion of Gar­ in the Missouri River Valley. In that twenty­ rison Dam in North Dakota, and Oahe, Big year period, five of the world's largest earthen Bend, Fort Randall, and Gavin's Point dams dams were built across the main-stem of the in South Dakota resulted in the innundation Missouri River in North and South Dakota.
    [Show full text]
  • Policy for Dam Safety and Geotechnical Mining Structures
    Policy for Dam Safety and Geotechnical Mining Structures DCA 108/2020 Rev.: 00 – 08/10/2020 Nº: POL-0037- G PUBLIC Objective: To establish guidance and commitments for the Safe Management of Dams and Geotechnical Mining Structures such that critical assets are controlled as well as to deal with the risk controls associated with the implemented Management Systems. Aplicação: This Policy applies to Vale and its 100% controlled subsidiaries. It must be reproduced for its direct and indirect subsidiaries, within Brazil and overseas, always in compliance to the articles of incorporation and the applicable legislation. Its adoption is encouraged at other entities in which Vale has a shareholding interest, in Brazil and overseas. References: • POL-0001-G – Code of Conduct • POL-0009-G – Risk Management Policy • POL-0019-G – Sustainability Policy • ABNT NBR ISO 9001:2015 – Sistema de Gestão da Qualidade (SGQ). • Technical Bulletin – Application of Dam Safety Guidelines to Mining Dams from the Canadian Dams Association (CDA). • Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure from the Australian Committee on Large Dams (ANCOLD). • Tailings Dam Safety Bulletin from the International Committee on Large Dams (ICOLD). • Guide to the Management of Tailings Facilities & Developing an Operation, Maintenance, and Surveillance. • Manual for Tailings and Water Management Facilities (the OMS Guide) from the Mining Association of Canada (MAC). • Global Industry Standard on Tailings Management (GISTM) from the Global Tailings Review (ICMM-UNEP-PRI) & Tailings Management: Good Practice Guides from the International Council on Mining and Metals (ICMM). • Slope Design Guidelines for Large Open Pit Project (LOP) from the Commonwealth Scientific and Industrial Research Organization (CSIRO da Australia).
    [Show full text]
  • Good and Bad Dams
    Latin America and Caribbean Region 1 Sustainable Development Working Paper 16 Public Disclosure Authorized Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 Public Disclosure Authorized Public Disclosure Authorized George Ledec Public Disclosure Authorized Juan David Quintero The World Bank Latin America and Caribbean Region Environmentally and Socially Sustainable Development Department (LCSES) Latin America and the Caribbean Region Sustainable Development Working Paper No. 16 Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 George Ledec Juan David Quintero The World Bank Latin America and the Caribbean Region Environmentally and Socially Sustainable Development Sector Management Unit George Ledec has worked with the World Bank since 1982, and is presently Lead Ecologist for the Environmen- tally and Socially Sustainable Development Unit (LCSES) of the World Bank’s Latin America and Caribbean Re- gional Office. He specializes in the environmental assessment of development projects, with particular focus on biodiversity and related conservation concerns. He has worked extensively with the environmental aspects of dams, roads, oil and gas, forest management, and protected areas, and is one of the main authors of the World Bank’s Natural Habitats Policy. Dr. Ledec earned a Ph.D. in Wildland Resource Science from the University of California-Berkeley, a Masters in Public Affairs from Princeton University, and a Bachelors in Biology and Envi- ronmental Studies from Dartmouth College. Juan David Quintero joined the World Bank in 1993 and is presently Lead Environmental Specialist for LCSES and Coordinator of the Bank’s Latin America and Caribbean Quality Assurance Team, which monitors compli- ance with environmental and social safeguard policies.
    [Show full text]
  • Be Aware of Potential Risk of Dam Failure in Your Community
    Be Aware of Potential Risk of Dam Failure in Your Community Approximately 15,000 dams in the United States are classified as high-hazard potential (HHP), meaning that their failure could result in loss of life. Dams can fail for a number of reasons, including overtopping caused by floods, acts of sabotage, or structural failure of materials used in dam construction. The worst dam failure in the United States occurred in 1889 in Johnstown, Pennsylvania. Over 2,200 died, with many more left homeless. Dams present risks but they also provide many benefits, including irrigation, flood control, and recreation. Dams have been identified as a key resource of our national infrastructure that is vulnerable to terrorist attack. States have the primary responsibility for protecting their populations from dam failure. Of the approximately 94,400 dams in the United States, State governments regulate about 70 percent. About 27,000 dams throughout our Nation could incur damage or fail, resulting in significant property damage, lifeline disruption (utilities), business disruption, displacement of families from their homes, and environmental damage. The most important steps you can take to protect yourself from dam failure are to know your risk. Contact government offices to learn if an Emergency Action Plan (EAP) is in place and to evacuate when directed by emergency response officials. An EAP is a formal document that identifies potential emergency conditions at a dam and specifies preplanned actions to be followed by the dam owner to reduce property damage and loss of life. The plan may save lives and property damage through timely evacuations of those who live, work, or enjoy recreation near a high-hazard potential dam.
    [Show full text]
  • Table of Contents
    Fairfield County, South Carolina, Emergency Operations Plan TABLE OF CONTENTS HEADING PAGE Introduction/Letter of Promulgation vii Legal Basis--Fairfield County Ordinance viii I. AUTHORITIES AND REFERENCES 1 A. Purpose 1 B. Authority 1 C. References 1 D. Maps 2 II. SITUATION AND ASSUMPTIONS 2 A. Situation 2 B. Assumptions 4 III. MISSION 5 IV. CONCEPT OF OPERATIONS 5 A. General 5 B. Municipalities 5 C. Fairfield County Government 5 D. State Government 6 E. Federal Government 6 F. Other Supporting Organizations 6 G. Actions by Phases of Emergency Management 6 H. Level of Readiness 8 I. Requesting Aid 8 J. Incident Command System 9 K. Damage Assessment 9 V. ORGANIZATION AND ASSIGNMENT OF RESPONSIBILITIES 9 A. County Government 9 B. Municipalities 12 C. Incident Command 13 D. Responsibilities 13 E. Coordinating Instructions 14 TABLE OF CONTENTS (CONTINUED) PAGE HEADING VI. ADMINISTRATION AND LOGISTICS 14 A. Reporting Requirements 14 B. Computer Capability 14 C. Logistics 15 D. Mutual Aid Agreements 15 E. Support 15 F. Augmenting Response Staff 15 G. Documentation 15 H. Resources 15 VII. DIRECTION AND CONTROL 16 A. Emergency Operating Center (EOC) 16 B. Line of Succession 16 VIII. PLAN DEVELOPMENT AND MAINTENANCE 17 A. Implementation 17 B. Development 17 C. Maintenance 17 IX. DISTRIBUTION 17 ATTACHMENTS 18 1. Organization Chart 19 2. Tasks and Responsibilities 20 3. Alert List 21 4. Supporting Plans and Their Sources 22 TABLE OF CONTENTS (CONTINUED) HEADING PAGE ANNEXES A. Emergency Operations Center Appendix 1--Organization Chart 9 Appendix 2--Alert List 10 Appendix 3--Call Down System for EOC Activation 12 Appendix 4--Layout of EOC 13 B.
    [Show full text]
  • Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
    Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics GEL 230 – Ecogeomorphology University of California, Davis Derek Roberts March 2nd, 2016 Abstract: At the upstream end of the Grand Canyon, the Glen Canyon Dam has changed the Colorado River from a run-of-the-river flow to a deep, summer-stratified reservoir. This change in flow regime significantly alters the temperature regime of the Colorado River. Seasonal temperature variation, once ranging from near to almost , is now limited to 7 . The lack of warm summer temperatures has prevented spawning of endangered 0℃ 30℃ humpback chub in the Colorado River. Implementation of a temperature control device, to − 14℃ allow for warmer summer releases to mitigate negative temperature effects on endangered fish, was considered by the federal government. Ultimately, this proposal was put on indefinite hold by the Bureau of Reclamation and U.S. Fish and Wildlife Service due to concerns of cost and unintended ecological consequences. The low-variability of the current dam-induced Colorado River temperature regime will continue into the foreseeable future. Agencies are reviewing humpback chub conservation efforts outside of temperature control. Keywords: Colorado River, Grand Canyon, Glen Canyon Dam, thermal dynamics 1.0 Introduction Temperature in natural water bodies is a primary driver of both ecological and physical processes. Freshwater plant and animal metabolisms are heavily affected by temperature (Coulter 2014). Furthermore, the thermal structure of a water body has significant impacts on the physical processes that drive ecosystem function (Hodges et al 2000); fluid dynamics drive transport of nutrients, oxygen, and heat. Human action, often the introduction of dams or industrial cooling systems, can alter the natural thermal regimes of rivers and lakes leading to reverberating impacts throughout associated ecosystems.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Attachment B Flooding and Dam Failure
    page 6-B-1 Attachment B Flooding and Dam Failure The Hazard Nature of the Flooding occurs when normally dry land is inundated with water (or Hazard flowing mud). Flooding may result from: bodies of water overflowing their banks, including artificial ones like dams and levees; structural failure of dams and levees; rapid accumulation of runoff or surface water; hurricane- caused storm surges or earthquake-caused tsunamis; or erosion of a shoreline. (Coastal flooding and erosion are not treated in this attachment.) Typically, the two parameters of most concern for flood planning are suddenness of onset--in the case of flash floods and dam failures--and flood elevation in relation to topography and structures. Other factors contributing to damage are the velocity or "energy" of moving water, the debris carried by the water, and extended duration of flood conditions. Flooding can happen at any time of the year, but predominates in the late Winter and early Spring due to melting snow, breakaway ice jams, and rainy weather patterns. Risk Area All States and territories are at risk from flooding. Apart from a rainy climate, local risk factors, usually present in combination, include: Rivers, These are bodies of water often subject to overflowing. The size of the Streams, and stream can be misleading; small streams that receive substantial rain or Drainageways snowmelt, locally or upstream, can overflow their banks. High-velocity, low elevation flooding can be dangerous and damaging. Six inches of moving water can knock a person off his or her feet; 12 inches of water flowing at 10 miles per hour carries the force of a 100 mile-per-hour wind, although the force would be distributed differently on obstacles.
    [Show full text]
  • Blackstone State Park to Pratt Dam – Intermediate Tours, Rhode Island
    BLACKSTONE RIVER & CANAL GUIDE Blackstone State Park to Pratt Dam – Intermediate Tours, Rhode Island [Map: USGS Pawtucket] Level . Intermediate Start . Ashton Dam / Lincoln Ashton Dam End . Lonsdale Village Portage River Miles Approx. 3 miles each way (6 mile loop) Ro River Time . 1 hour / 2 hour loop ut e 116 Access 0 miles Bikeway Description Quickwater, Class I-II (in river); II Flatwater (in canal) Parking Scenery . Towns, mills, wetlands 6 2 Portages. One portage from River to Canal for loop; portage over Pratt 1 Kelly House Bikeway Parking e Dam to continue downriver or take out t Transportation u o Museum Ashton Mill R Rout Blackstone Canal e 116 The heart of Rhode Island’s Blackstone River State Park, with a choice between the river and canal or a river to canal trail “loop”. Blackstone River State Park This section can be navigated either in the river or in the canal. Paddlers Blackstone can also make this a water trail loop by paddling down the Blackstone River River and back up the Blackstone Canal to the Kelly House Canal Quinnville d Ashton R oa Museum. o u R t r e e v 1 i NOTE: Currently (2005-06), construction at the Martin Street Bridge 26 R r e does not allow paddlers access through the canal. Check on the status of w o Martin L the construction before planning your trip. 1 Street Bridge RIVER ROUTE / RIVER AND CANAL TRAIL LOOP To put-in the Blackstone River, carry up the road under the viaduct Ma towards the dam where there is a portage trail to the right just past the rtin St R o pedestrian bridge or put-in just below the bikeway bridge behind the u t e Blackstone River State Park’s Kelly House Museum 1 2 2 The Wilbur Kelly House Museum describes the evolution of transportation M in the Blackstone River Valley, from primitive trails through the canal, the e n d railroad and on to modern highways.
    [Show full text]
  • The Effects of Glen Canyon Dam on the Colorado River
    THE EFFECTS OF GLEN CANYON DAM ON THE COLORADO RIVER. by Margaret Gebren A SENIOR THESIS m GENERAL STUDIES Submitted to the General Studies Council in the College of Arts and Sciences at Texas Tech University in Partial fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Dr. JeffLee Depal'tmenr of Economics and Geography Co-Chair of Thesis Committee Dr. Rob Mitchell Department of R WFM Co-Chair of Thesis Committee ----~~------- Dr. Dale Davis Director of General Studies May 1999 /ILZ ''55< ' / 7 3 ACKNOWLEDGMENTS I wish to express my deep gratitude to Dr. Lee and Dr. Mitchell for taking time out to read and critique my work and also for their commitment to teaching, which is greatly underrated. Thanks also to my family, for graciously correcting my grammar and spelling all these years! TABLE OF CONTENTS ACKNOWLEDGMENTS ii CHAPTER I. INTRODUCTION 1 II. HISTORY OF THE DAM 4 III. LIFE BEFORE THE DAM 7 IV. FORMATION OF THE GRAND CANYON 9 V. LIFE AFTER THE DAM 14 Lake Powell 14 Water Releases 15 Rapids 16 Sand and Sediment 16 Vegetation 17 Backwaters 18 Water Chemistry and Temperature 18 Heavy Metals 19 Salinity 20 Endangered Species 21 VI. THE PLAN 24 VII. THE EXPERIEMENT 27 VIII. RESULTS 30 Sandbars and Sediment Transportation 30 Rapids 31 ni Camping Beaches 31 Backwater Habitats 32 Geochemistry 33 Fisheries 33 Riparian Vegetation and Resources 34 Cultural Resources 34 IX. CONCLUSIONS 35 BIBLIOGRAPHY 36 IV CHAPTER 1 INTRODUCTION Mankind has become so used to controlling nature that we often forget or over-look the consequences of our handiwork.
    [Show full text]
  • Sonoma County Multi-Jurisdictional Hazard Mitigation Plan Meeting Summary
    Sonoma County Multi-Jurisdictional Hazard Mitigation Plan Meeting Summary Date/Time of Meeting: Thursday, September 24, 2020 Location: Digital Subject: Steering Committee Meeting No. 2 Project Name: Sonoma County Multi‐Jurisdictional Hazard Mitigation Plan Update In Attendance Attendees: 25 (21 SoCo, 4 TT) Planning Team: Lisa Hulette, Bart Spencer, Rob Flaner, Carol Baumann, Des Alexander Not Present: N/A Summary Prepared by: Des Alexander Quorum – Yes or No Yes Item Action Welcome and Introductions Lisa Hulette welcomed members of the steering committee to Previous steering committee the 2nd meeting for Sonoma County’s MJHMP update meeting notes were approved Des Alexander did a roll call, where 21 committee members were in attendance, with 4 members of Tetra Tech also on the call. No members of the public were on the call. Planning Process Motion to approve meeting summary for Steering Committee meeting 1 was made by Shari Meads, seconded by Kim Jordan, and approved All planning partners who wish to participate in process have been contacted Lisa and Bart discussed the draft mission/vision statement document that was sent to committee members. The document featured several sample mission and vision statements, as well as several goals and objectives Although several members did not have a comment, most of the comments that were made were focused on using fewer and more general words; making sure equity was factored into mitigation process, actions, and outcome; placing more emphasis on disaster mitigation with green infrastructure; separate natural and man‐made hazards in the goals section Meeting Summary Item Action Hazards of Concern The homework from the last meeting was briefly discussed.
    [Show full text]
  • Dam Failure Refers to a Collapse, Overtopping, Breaching Or Any Related Condition That Causes Downstream Flooding
    HAZARD: DAM FAILURE DAM FAILURE PROFILE: Dam failure refers to a collapse, overtopping, breaching or any related condition that causes downstream flooding. Approximately one-third of all dam failures are caused by overtopping due to inadequate spillway capacity, one-third are caused by seepage through or under the structure, and the remainder from improper design or construction or because of earthquake or landside events which trigger the failure of the dam. Examples of dam failure in the United States include the Johnstown Flood in 1889 resulting in 2209 deaths, the Saugus, California dam collapse in the Los Angeles Aqueduct system in 1928 resulting in 450 deaths, and the Teton Dam breach on the Snake River in Idaho during a flash flood in 1976 resulting in 11 deaths. During Hurricane Agnes in 1972, concern about the Conowingo Dam on the Susquehanna River led to the opening of all flood gates to release pressure when the water level was three feet higher than the dam’s rated capacity. COUNTY PERSPECTIVE AND HISTORY: According to the Maryland Department of the Environment, Garrett County has 28 dams, of which 11 are rated as high hazard dams as shown on Figure 33. The Maryland Hazard Analysis rates Garrett County’s composite risk for dam failure at 4 on a scale of one to five. The county’s planning committee agrees with this risk. The largest dams in the county include the Savage River Dam, the Bloomington Dam on the Potomac River, and the Deep Creek Lake Dam as shown on the map on Figure 34.
    [Show full text]