Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Little Colorado River Project: Is New Hydropower Development the Key to a Renewable Energy Future, Or the Vestige of a Failed Past?
COLORADO NATURAL RESOURCES, ENERGY & ENVIRONMENTAL LAW REVIEW The Little Colorado River Project: Is New Hydropower Development the Key to a Renewable Energy Future, or the Vestige oF a Failed Past? Liam Patton* Table of Contents INTRODUCTION ........................................................................................ 42 I. THE EVOLUTION OF HYDROPOWER ON THE COLORADO PLATEAU ..... 45 A. Hydropower and the Development of Pumped Storage .......... 45 B. History of Dam ConstruCtion on the Plateau ........................... 48 C. Shipping ResourCes Off the Plateau: Phoenix as an Example 50 D. Modern PoliCies for Dam and Hydropower ConstruCtion ...... 52 E. The Result of Renewed Federal Support for Dams ................. 53 II. HYDROPOWER AS AN ALLY IN THE SHIFT TO CLEAN POWER ............ 54 A. Coal Generation and the Harms of the “Big Buildup” ............ 54 B. DeCommissioning Coal and the Shift to Renewable Energy ... 55 C. The LCR ProjeCt and “Clean” Pumped Hydropower .............. 56 * J.D. Candidate, 2021, University oF Colorado Law School. This Note is adapted From a final paper written for the Advanced Natural Resources Law Seminar. Thank you to the Colorado Natural Resources, Energy & Environmental Law Review staFF For all their advice and assistance in preparing this Note For publication. An additional thanks to ProFessor KrakoFF For her teachings on the economic, environmental, and Indigenous histories of the Colorado Plateau and For her invaluable guidance throughout the writing process. I am grateFul to share my Note with the community and owe it all to my professors and classmates at Colorado Law. COLORADO NATURAL RESOURCES, ENERGY & ENVIRONMENTAL LAW REVIEW 42 Colo. Nat. Resources, Energy & Envtl. L. Rev. [Vol. 32:1 III. ENVIRONMENTAL IMPACTS OF PLATEAU HYDROPOWER ............... -
Flooding the Missouri Valley the Politics of Dam Site Selection and Design
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Quarterly Great Plains Studies, Center for Summer 1997 Flooding The Missouri Valley The Politics Of Dam Site Selection And Design Robert Kelley Schneiders Texas Tech University Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsquarterly Part of the Other International and Area Studies Commons Schneiders, Robert Kelley, "Flooding The Missouri Valley The Politics Of Dam Site Selection And Design" (1997). Great Plains Quarterly. 1954. https://digitalcommons.unl.edu/greatplainsquarterly/1954 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Quarterly by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FLOODING THE MISSOURI VALLEY THE POLITICS OF DAM SITE SELECTION AND DESIGN ROBERT KELLEY SCHNEIDERS In December 1944 the United States Con Dakota is 160 feet high and 10,700 feet long. gress passed a Rivers and Harbors Bill that The reservoir behind it stretches 140 miles authorized the construction of the Pick-Sloan north-northwest along the Missouri Valley. plan for Missouri River development. From Oahe Dam, near Pierre, South Dakota, sur 1946 to 1966, the United States Army Corps passes even Fort Randall Dam at 242 feet high of Engineers, with the assistance of private and 9300 feet long.! Oahe's reservoir stretches contractors, implemented much of that plan 250 miles upstream. The completion of Gar in the Missouri River Valley. In that twenty rison Dam in North Dakota, and Oahe, Big year period, five of the world's largest earthen Bend, Fort Randall, and Gavin's Point dams dams were built across the main-stem of the in South Dakota resulted in the innundation Missouri River in North and South Dakota. -
AFS Policy Statement #32: STUDY REPORT on DAM REMOVAL for the AFS RESOURCE POLICY COMMITTEE (Full Text)
AFS Policy Statement #32: STUDY REPORT ON DAM REMOVAL FOR THE AFS RESOURCE POLICY COMMITTEE (Full Text) (DRAFT #7: 10/05/01, J. Haynes, Editor) (DRAFT #8: 02/23/03, T. Bigford) (DRAFT #9: 03/18/03, H. Blough) (DRAFT #10: 09/23/03, T. Bigford) (DRAFT #11: 09/25/03, T. Bigford) (DRAFT #12: 10/31/03, T. Bigford) (DRAFT #13: 1/9/04, T. Bigford) (DRAFT #14: 7/7/04, T. Bigford) (DRAFT #15: 7/18/04, T. Bigford) (DRAFT #16: 11/20/04, T. Bigford) 2003-2004 Resource Policy Committee Heather Blough, Co-Chair, Kim Hyatt, Co-Chair, Mary Gessner, Victoria Poage, Allan Creamer, Chris Lenhart, Jamie Geiger, Jarrad Rosa, Wilson Laney, Tom Bigford, Danielle Pender, Tim Essington with assistance from Jennifer Lowery 2002-2003 Resource Policy Committee Heather Blough, Co-Chair, Thomas E. Bigford, Co-Chair Allan Creamer, Bob Peoples, Chris Lenhart, Maria La Salete Bernardino Rodrigues, Jamie Geiger, Jarrad Rosa, Wilson Laney, Kim Hyatt, Danielle Pender 2001-2002 Resource Policy Committee Tom Bigford, Chair, Heather Blough, Vice Chair, Jim Francis, Bill Gordon, Judy Pederson, Larry Simpson, Jarrad Kosa, Jaime Geiger, Bob Peoples, Maria La Salete Bernardino Rodrigues, Chris Lenhart 2000-2001 Coordinating Committee James M. Haynes, Chair, R. Duane Harrell, Christine M. Moffitt (ex officio), tc "James M. Haynes, Chair, R. Duane Harrell, Christine M. Moffitt (ex officio), Gary E. Whelan, Maureen Wilson, James M. Haynes, Chair 1999-2000 Study Committee Larry L. Olmsted, Chair, Donald C. Jackson, Peter B. Moyle,Stephen G. Rideout November 20, 2004 Introduction This study report provides background information to support a recommendation by the American Fisheries Society’s (AFS) Resource Policy Committee to develop a Dam Removal Policy Statement for consideration by the Governing Board and the full membership. -
Policy for Dam Safety and Geotechnical Mining Structures
Policy for Dam Safety and Geotechnical Mining Structures DCA 108/2020 Rev.: 00 – 08/10/2020 Nº: POL-0037- G PUBLIC Objective: To establish guidance and commitments for the Safe Management of Dams and Geotechnical Mining Structures such that critical assets are controlled as well as to deal with the risk controls associated with the implemented Management Systems. Aplicação: This Policy applies to Vale and its 100% controlled subsidiaries. It must be reproduced for its direct and indirect subsidiaries, within Brazil and overseas, always in compliance to the articles of incorporation and the applicable legislation. Its adoption is encouraged at other entities in which Vale has a shareholding interest, in Brazil and overseas. References: • POL-0001-G – Code of Conduct • POL-0009-G – Risk Management Policy • POL-0019-G – Sustainability Policy • ABNT NBR ISO 9001:2015 – Sistema de Gestão da Qualidade (SGQ). • Technical Bulletin – Application of Dam Safety Guidelines to Mining Dams from the Canadian Dams Association (CDA). • Guidelines on Tailings Dams – Planning, Design, Construction, Operation and Closure from the Australian Committee on Large Dams (ANCOLD). • Tailings Dam Safety Bulletin from the International Committee on Large Dams (ICOLD). • Guide to the Management of Tailings Facilities & Developing an Operation, Maintenance, and Surveillance. • Manual for Tailings and Water Management Facilities (the OMS Guide) from the Mining Association of Canada (MAC). • Global Industry Standard on Tailings Management (GISTM) from the Global Tailings Review (ICMM-UNEP-PRI) & Tailings Management: Good Practice Guides from the International Council on Mining and Metals (ICMM). • Slope Design Guidelines for Large Open Pit Project (LOP) from the Commonwealth Scientific and Industrial Research Organization (CSIRO da Australia). -
Good and Bad Dams
Latin America and Caribbean Region 1 Sustainable Development Working Paper 16 Public Disclosure Authorized Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 Public Disclosure Authorized Public Disclosure Authorized George Ledec Public Disclosure Authorized Juan David Quintero The World Bank Latin America and Caribbean Region Environmentally and Socially Sustainable Development Department (LCSES) Latin America and the Caribbean Region Sustainable Development Working Paper No. 16 Good Dams and Bad Dams: Environmental Criteria for Site Selection of Hydroelectric Projects November 2003 George Ledec Juan David Quintero The World Bank Latin America and the Caribbean Region Environmentally and Socially Sustainable Development Sector Management Unit George Ledec has worked with the World Bank since 1982, and is presently Lead Ecologist for the Environmen- tally and Socially Sustainable Development Unit (LCSES) of the World Bank’s Latin America and Caribbean Re- gional Office. He specializes in the environmental assessment of development projects, with particular focus on biodiversity and related conservation concerns. He has worked extensively with the environmental aspects of dams, roads, oil and gas, forest management, and protected areas, and is one of the main authors of the World Bank’s Natural Habitats Policy. Dr. Ledec earned a Ph.D. in Wildland Resource Science from the University of California-Berkeley, a Masters in Public Affairs from Princeton University, and a Bachelors in Biology and Envi- ronmental Studies from Dartmouth College. Juan David Quintero joined the World Bank in 1993 and is presently Lead Environmental Specialist for LCSES and Coordinator of the Bank’s Latin America and Caribbean Quality Assurance Team, which monitors compli- ance with environmental and social safeguard policies. -
Environmental Benefits of Dam Removal
A Research Paper by Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 <Year> Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 PUBLISHED ONLINE: http://headwaterseconomics.org/economic-development/local-studies/dam-removal-case-studies ABOUT HEADWATERS ECONOMICS Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions in the West. CONTACT INFORMATION Megan Lawson, Ph.D.| [email protected] | 406-570-7475 P.O. Box 7059 Bozeman, MT 59771 http://headwaterseconomics.org Cover Photo: Whittenton Pond Dam, Mill River, Massachusetts. American Rivers. TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................. 1 MEASURING THE BENEFITS OF DAM REMOVAL ........................................................................................... 2 CONCLUSION ................................................................................................................................................. 5 CASE STUDIES WHITTENTON POND DAM, MILL RIVER, MASSACHUSETTS ........................................................................ 11 ELWHA AND GLINES CANYON DAMS, ELWHA RIVER, WASHINGTON ........................................................ 14 EDWARDS DAM, KENNEBEC RIVER, MAINE ............................................................................................... -
3.6 Riverflow Issues
AFFECTED ENVIRONMENT & ENVIRONMENTAL CONSEQUENCES CHAPTER 3 3.6 RIVERFLOW ISSUES 3.6.1 INTRODUCTION This section considers the potential effects of interim surplus criteria on three types of releases from Glen Canyon Dam and Hoover Dam. The Glen Canyon Dam releases analyzed are those needed for restoration of beaches and habitat along the Colorado River between the Glen Canyon Dam and Lake Mead, and for a yet to be defined program of low steady summer flows to be provided for the study and recovery of endangered Colorado River fish, in years when releases from the dam are near the minimum. The Hoover Dam releases analyzed are the frequency of flood releases from the dam and the effect of flood flows along the river downstream of Hoover Dam. 3.6.2 BEACH/HABITAT-BUILDING FLOWS The construction and operation of Glen Canyon Dam has caused two major changes related to sediment resources downstream in Glen Canyon and Grand Canyon. The first is reduced sediment supply. Because the dam traps virtually all of the incoming sediment from the Upper Basin in Lake Powell, the Colorado River is now released from the dam as clear water. The second major change is the reduction in the high water zone from the level of pre-dam annual floods to the level of powerplant releases. Thus, the height of annual sediment deposition and erosion has been reduced. During the investigations leading to the preparation of the Operation of Glen Canyon Dam Final EIS (Reclamation, 1995b), the relationships between releases from the dam and downstream sedimentation processes were brought sharply into focus, and flow patterns designed to conserve sediment for building beaches and habitat (i.e., beach/habitat-building flow, or BHBF releases) were identified. -
Marmot Dam Removal Geomorphic Monitoring & Modelling Project
MARMOT DAM REMOVAL GEOMORPHIC MONITORING & MODELING PROJECT ANNUAL REPORT June 2008 – May 2009 Prepared for: Sandy River Basin Watershed Council PO Box 868 Sandy OR 97055 Prepared by: Charles Podolak Johns Hopkins University Department of Geography & Environmental Engineering 3400 N. Charles St, Baltimore MD 21218 Smokey Pittman Graham Matthews & Associates P.O. Box 1516, Weaverville, CA, 96093 June 2010 ACKNOWLEDGEMENTS We would like to sincerely thank all who assisted with the Marmot Dam Removal Geomorphic Monitoring & Modeling Project: Oregon Watershed Enhancement Board – funding Johns Hopkins University & The National Center for Earth-surface Dynamics (NCED) Peter Wilcock Project Advisor Daniela Martinez Graduate Assistant NCED & National Science Foundation Research Experience for Undergraduates Kim Devillier Intern Dajana Jurk Intern Cecilia Palomo Intern Tim Shin Intern Katie Trifone Intern Graham Matthews & Associates Graham Matthews GMA Principle Investigator Logan Cornelius Streamflow and Sediment Sampling Cort Pryor Streamflow and Sediment Sampling Brooke Connell Topographic Surveys Keith Barnard Topographic Surveys/Survey Data Analysis Sandy River Basin Watershed Council Russ Plaeger Director U.S. Geological Survey Jon Major Jim O’Connor Rose Wallick Mackenzie Keith U.S. Forest Service Connie Athman Gordon Grant Portland General Electric David Heinzman John Esler Tim Keller Tony Dentel Metro Parks Bill Doran Landowners Mary Elkins David Boos MARMOT DAM REMOVAL GEOMORPHIC MONITORING & MODELING PROJECT – 2009 ANNUAL REPORT ii -
Fielder and Wimer Dam Removals Phase I
R & E Grant Application Project #: 13 Biennium 13-054 Fielder and Wimer Dam Removals Phase I Project Information R&E Project $58,202.00 Request: Match Funding: $179,126.00 Total Project: $237,328.00 Start Date: 4/26/2014 End Date: 6/30/2015 Project Email: [email protected] Project 13 Biennium Biennium: Organization: WaterWatch of Oregon (Tax ID #: 93-0888158) Fiscal Officer Name: John DeVoe Address: 213 SW Ash Street, Suite 208 Portland, OR 97204 Telephone: 503-295-4039 x1 Email: [email protected] Applicant Information Name: Bob Hunter Email: [email protected] Past Recommended or Completed Projects This applicant has no previous projects that match criteria. Project Summary This project is part of ODFW’s 25 Year Angling Plan. Activity Type: Passage Summary: The project is to solve the fish passage problems associated with Fielder and Wimer Dams by removing the aging structures. This grant will provide funding for the pre-implementation mapping, assessments, analyses, design work, permitting, construction drawings, and preparation of bid packages needed for removal of these two dams. This Phase I pre-implementation work will be followed by Phase II implementation of the dam removal and site restoration plans that will be developed in this first phase. Objectives: Fielder and Wimer Dams are located on Evans Creek, an important salmon and Project #: 13-054 Last Modified/Revised: 4/11/2014 3:16:13 PM Page 1 of 12 Fielder and Wimer Dam Removals Phase I steelhead spawning tributary of the Rogue River. Both dams are listed in the top ten in priority statewide on ODFW’s 2013 Statewide Fish Passage Priority List. -
Item F – Klamath Dam Removal - Contingency Funding March 9-10, 2021 Board Meeting
Kate Brown, Governor 775 Summer Street NE, Suite 360 Salem OR 97301-1290 www.oregon.gov/oweb (503) 986-0178 Agenda Item F supports OWEB’s Strategic Plan priority #3: Community capacity and strategic partnerships achieve healthy watersheds, and Strategic Plan priority 7: Bold and innovative actions to achieve health in Oregon’s watersheds. MEMORANDUM TO: Oregon Watershed Enhancement Board FROM: Meta Loftsgaarden, OWEB Executive Director Richard Whitman, DEQ Director SUBJECT: Agenda Item F – Klamath Dam Removal - Contingency Funding March 9-10, 2021 Board Meeting I. Introduction Removal of the four PacifiCorp dams along the Klamath River in Oregon and California that block fish passage has been a priority of multiple governors in both states for over a decade. After extensive work by the Klamath River Renewal Corporation and its contractors (in partnership with states, tribes, federal agencies, irrigators, conservation groups, and many others), there is now a clear path to completing dam removal in 2023. This staff report updates the board on the dam removal project and asks for a general indication of board support in the unlikely event that additional funding is needed to complete restoration work following dam removal. II. Background PacifiCorp owns and operates four hydro-electric dams on the Klamath River, three in California and one in Oregon. PacifiCorp has decided to that it is in the best interest of the company and its customers to stop operating the dams rather than spending substantial amounts on improvements likely to be needed if they were to continue generating power. PacifiCorp has agreed to transfer ownership of the dams to the Klamath River Restoration Corporation, which in turn has contracted with Kiewit Infrastructure -- one of the nation’s most experienced large project construction firms – which will remove the dams and restore the river to a free-flowing condition. -
Be Aware of Potential Risk of Dam Failure in Your Community
Be Aware of Potential Risk of Dam Failure in Your Community Approximately 15,000 dams in the United States are classified as high-hazard potential (HHP), meaning that their failure could result in loss of life. Dams can fail for a number of reasons, including overtopping caused by floods, acts of sabotage, or structural failure of materials used in dam construction. The worst dam failure in the United States occurred in 1889 in Johnstown, Pennsylvania. Over 2,200 died, with many more left homeless. Dams present risks but they also provide many benefits, including irrigation, flood control, and recreation. Dams have been identified as a key resource of our national infrastructure that is vulnerable to terrorist attack. States have the primary responsibility for protecting their populations from dam failure. Of the approximately 94,400 dams in the United States, State governments regulate about 70 percent. About 27,000 dams throughout our Nation could incur damage or fail, resulting in significant property damage, lifeline disruption (utilities), business disruption, displacement of families from their homes, and environmental damage. The most important steps you can take to protect yourself from dam failure are to know your risk. Contact government offices to learn if an Emergency Action Plan (EAP) is in place and to evacuate when directed by emergency response officials. An EAP is a formal document that identifies potential emergency conditions at a dam and specifies preplanned actions to be followed by the dam owner to reduce property damage and loss of life. The plan may save lives and property damage through timely evacuations of those who live, work, or enjoy recreation near a high-hazard potential dam. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.