Lee's Ferry Historic District
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trip Planner
National Park Service U.S. Department of the Interior Grand Canyon National Park Grand Canyon, Arizona Trip Planner Table of Contents WELCOME TO GRAND CANYON ................... 2 GENERAL INFORMATION ............................... 3 GETTING TO GRAND CANYON ...................... 4 WEATHER ........................................................ 5 SOUTH RIM ..................................................... 6 SOUTH RIM SERVICES AND FACILITIES ......... 7 NORTH RIM ..................................................... 8 NORTH RIM SERVICES AND FACILITIES ......... 9 TOURS AND TRIPS .......................................... 10 HIKING MAP ................................................... 12 DAY HIKING .................................................... 13 HIKING TIPS .................................................... 14 BACKPACKING ................................................ 15 GET INVOLVED ................................................ 17 OUTSIDE THE NATIONAL PARK ..................... 18 PARK PARTNERS ............................................. 19 Navigating Trip Planner This document uses links to ease navigation. A box around a word or website indicates a link. Welcome to Grand Canyon Welcome to Grand Canyon National Park! For many, a visit to Grand Canyon is a once in a lifetime opportunity and we hope you find the following pages useful for trip planning. Whether your first visit or your tenth, this planner can help you design the trip of your dreams. As we welcome over 6 million visitors a year to Grand Canyon, your -
Colorado River Basin: System Status Update and Outlook for 2018 and 2019
Colorado River Basin: System Status Update and Outlook for 2018 and 2019 Daniel Bunk River Operations Manager Boulder Canyon Operations Office, Lower Colorado Region Colorado River Citizens Forum in Yuma, Arizona January 24, 2018 Topics • Overview of the Colorado River Basin • Colorado River Drought • Projected Conditions • Drought Response Activities • Summary 2 Overview of the Colorado River System • 16.5 million acre-feet (maf) allocated annually - 7.5 maf each to Upper and Lower Basins and 1.5 maf to Mexico - 13 to 14.5 maf of basin-wide consumptive use annually • 16 maf average annual “natural flow” (based on historical record) - 14.8 maf in the Upper Basin and 1.3 maf in the Lower Basin • Inflows are highly variable year to year • 60 maf of storage (nearly 4-times the annual inflow) • The System is operated on a type hydrologic budget 3 Natural Flow Colorado River at Lees Ferry Gaging Station, Arizona Water Year 1906 to 2018 Colorado River at Lees Ferry, AZ - Natural Flow 30 30 Average 10-yr Moving Average 25 25 20 20 15 15 Annual Annual Flow(MAF) 10 10 5 5 0 0 Water Year Provisional data, subject to change Estimated values for 2016-2018 4 Water Budget at Lake Mead Given current water demands in the Lower Basin and Mexico, and a minimum objective release from Lake Powell (8.23 maf), Lake Mead storage declines by about 1.2 maf annually (equivalent to about 12 feet in elevation). Inflow 9.0 maf (Powell release + side inflows above Mead) Outflow -9.6 maf (Lower Division State apportionments and Mexico Treaty allocation, plus balance of downstream regulation, gains, and losses) Mead evaporation loss -0.6 maf Balance -1.2 maf 5 Lake Mead End of Month Elevation 1,225 Spillway Crest 1221 ft 1,200 1,175 September 1999 December 2017 39% of Capacity 1,150 95% of Capacity 1,125 1,100 Elevation (ft) Elevation 1,075 1,050 Prior to 1999, Lake Mead was last at elevation 1,082.52 feet in June 1937. -
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics GEL 230 – Ecogeomorphology University of California, Davis Derek Roberts March 2nd, 2016 Abstract: At the upstream end of the Grand Canyon, the Glen Canyon Dam has changed the Colorado River from a run-of-the-river flow to a deep, summer-stratified reservoir. This change in flow regime significantly alters the temperature regime of the Colorado River. Seasonal temperature variation, once ranging from near to almost , is now limited to 7 . The lack of warm summer temperatures has prevented spawning of endangered 0℃ 30℃ humpback chub in the Colorado River. Implementation of a temperature control device, to − 14℃ allow for warmer summer releases to mitigate negative temperature effects on endangered fish, was considered by the federal government. Ultimately, this proposal was put on indefinite hold by the Bureau of Reclamation and U.S. Fish and Wildlife Service due to concerns of cost and unintended ecological consequences. The low-variability of the current dam-induced Colorado River temperature regime will continue into the foreseeable future. Agencies are reviewing humpback chub conservation efforts outside of temperature control. Keywords: Colorado River, Grand Canyon, Glen Canyon Dam, thermal dynamics 1.0 Introduction Temperature in natural water bodies is a primary driver of both ecological and physical processes. Freshwater plant and animal metabolisms are heavily affected by temperature (Coulter 2014). Furthermore, the thermal structure of a water body has significant impacts on the physical processes that drive ecosystem function (Hodges et al 2000); fluid dynamics drive transport of nutrients, oxygen, and heat. Human action, often the introduction of dams or industrial cooling systems, can alter the natural thermal regimes of rivers and lakes leading to reverberating impacts throughout associated ecosystems. -
Colorado & Utah National Park Tour
Colorado & Utah National Park Tour $2590 Per Person 11 Days / 10 Nights Day 1 - Hays, KS Day 4 - Arches National Park We begin our journey by heading west into Kansas. While driving through the Flint Hills, we’ll see several This morning we head to Canyonlands National Park windfarms and hundreds of miles of prairie and crop where we’ll explore some of the towering buttes and land. You’ll visit the Dwight Eisenhower Library and deep canyons carved out by the Colorado River. In the Museum. There is a vast amount of history in this afternoon we’re off to see the arches at Arches National world-class library. We’ll end today in Hays, KS. Park. We’ll see a few of the 2,000 natural stone arches and bridges. Tonight we end up in Green River, UT. Day 2 - Wings Over the Rockies Museum After breakfast we start our journey to Colorado. We stop at Wings Over the Rockies Air & Space Museum. You’ll see a hangar full of iconic aircraft and military memorabilia. We’ll also visit Downtown Denver and Union Station for some sight seeing and a bite to eat before we settle into our hotel near Golden, CO. Make sure to rest up for the great days ahead. Day 3 - Colorado National Monument This morning we’ll drive west to the Colorado National Monument where you’ll see sheer-walled red rock canyons, towering monoliths and maybe some big horn sheep. Along the way we’ll drive through the Day 5 - Bryce Canyon National Park famous Eisenhower Tunnel. -
The Effects of Glen Canyon Dam on the Colorado River
THE EFFECTS OF GLEN CANYON DAM ON THE COLORADO RIVER. by Margaret Gebren A SENIOR THESIS m GENERAL STUDIES Submitted to the General Studies Council in the College of Arts and Sciences at Texas Tech University in Partial fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Dr. JeffLee Depal'tmenr of Economics and Geography Co-Chair of Thesis Committee Dr. Rob Mitchell Department of R WFM Co-Chair of Thesis Committee ----~~------- Dr. Dale Davis Director of General Studies May 1999 /ILZ ''55< ' / 7 3 ACKNOWLEDGMENTS I wish to express my deep gratitude to Dr. Lee and Dr. Mitchell for taking time out to read and critique my work and also for their commitment to teaching, which is greatly underrated. Thanks also to my family, for graciously correcting my grammar and spelling all these years! TABLE OF CONTENTS ACKNOWLEDGMENTS ii CHAPTER I. INTRODUCTION 1 II. HISTORY OF THE DAM 4 III. LIFE BEFORE THE DAM 7 IV. FORMATION OF THE GRAND CANYON 9 V. LIFE AFTER THE DAM 14 Lake Powell 14 Water Releases 15 Rapids 16 Sand and Sediment 16 Vegetation 17 Backwaters 18 Water Chemistry and Temperature 18 Heavy Metals 19 Salinity 20 Endangered Species 21 VI. THE PLAN 24 VII. THE EXPERIEMENT 27 VIII. RESULTS 30 Sandbars and Sediment Transportation 30 Rapids 31 ni Camping Beaches 31 Backwater Habitats 32 Geochemistry 33 Fisheries 33 Riparian Vegetation and Resources 34 Cultural Resources 34 IX. CONCLUSIONS 35 BIBLIOGRAPHY 36 IV CHAPTER 1 INTRODUCTION Mankind has become so used to controlling nature that we often forget or over-look the consequences of our handiwork. -
Glen Canyon Unit, CRSP, Arizona and Utah
Contents Glen Canyon Unit ............................................................................................................................2 Project Location...................................................................................................................3 Historic Setting ....................................................................................................................4 Project Authorization .........................................................................................................8 Pre-Construction ................................................................................................................14 Construction.......................................................................................................................21 Project Benefits and Uses of Project Water.......................................................................31 Conclusion .........................................................................................................................36 Notes ..................................................................................................................................39 Bibliography ......................................................................................................................46 Index ..................................................................................................................................52 Glen Canyon Unit The Glen Canyon Unit, located along the Colorado River in north central -
Canyonlands National Park and Orange Cliffs Unit of Glen Canyon National Recreation Area, Environmental Assessment for Backcountry Management Plan
Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 12-1993 Canyonlands National Park and Orange Cliffs Unit of Glen Canyon National Recreation Area, Environmental Assessment for Backcountry Management Plan Canyonlands National Park Glen Canyon National Recreation Area Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Environmental Sciences Commons Recommended Citation Canyonlands National Park and Glen Canyon National Recreation Area, "Canyonlands National Park and Orange Cliffs Unit of Glen Canyon National Recreation Area, Environmental Assessment for Backcountry Management Plan" (1993). All U.S. Government Documents (Utah Regional Depository). Paper 171. https://digitalcommons.usu.edu/govdocs/171 This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. TABLE OF CONTENTS r NEED FOR THE PLAN ..............•... ........ .. •...... .. .. - -~ONLANDS NATIONAL PARK Introduclion .............. .. ..... • . ........ , ...•.. .. and Definilion of Backcounlry . .. ... ... .. ....• . ..•... , .. ORANGE CLIFFS UNIT Plannirg Area . ...... ....... , .. ..... .. ,.......... 4 of Planning Process ............... ,. .. ....... .......... -
Frequently Asked Questions
Frequently Asked Questions Prepared cooperatively by Bureau of Reclamation, National Park Service, U.S. Fish and Wildlife Service, and U.S. Geological Survey What is a high-flow experiment? A high-flow experiment is a release of water from Glen Canyon Dam intended to rebuild high- elevation sandbars, deposit nutrients, and restore backwater channels. For 2008, it is proposed that approximately 41,000 cubic feet per second (cfs) of water be released from Glen Canyon Dam for 60 hours. What are the anticipated benefits of a high-flow experiment? Higher than normal flows are required to deposit sand up and onto eroded Grand Canyon sandbars, which serve as camping beaches for river runners and hikers, provide sediment needed to protect archaeological resources from erosion and weathering, and create habitats used by native fishes, particularly the endangered humpback chub (Gila cypha) and other wildlife. The experimental studies associated with the proposed 2008 high-flow experiment are designed to build upon existing scientific knowledge to inform managers about the efficacy of using high flows from the dam to improve a range of resources, including not only sandbars and humpback chub habitat, but also rainbow trout (Oncorhynchus mykiss), the aquatic food base, riparian vegetation, archaeological sites, and water quality. What is adaptive management? Adaptive management is generally understood to be a systematic process for continually improving management practices over time by emphasizing learning through experimentation. Adaptive management also incorporates collaboration among stakeholders, managers, and scientists who are knowledgeable about the system being evaluated. The comprehensive, iterative, and collaborative nature of an adaptive management approach is why it was implemented as part of the long-term management strategy for refining operations of Glen Canyon Dam to improve downstream resources. -
Glen Canyon Report
The Degraded Reach: Rate and Pattern of Bed and Bank Adjustment of the Colorado River in the 25 km Immediately Downstream from Glen Canyon Dam Paul E. Grams1, John C. Schmidt1, David J. Topping2, and Sara Goeking1 1 Department of Aquatic, Watershed, and Earth Resources, Utah State University 2Water Resources Division, U. S. Geological Survey July 2004 in partial fulfillment of cooperative agreement 1425-98-FC-40-22640 and modifications, between Utah State University and the Grand Canyon Monitoring and Research Center CONTENTS CONTENTS........................................................................................................................ 2 ABSTRACT........................................................................................................................ 4 INTRODUCTION .............................................................................................................. 6 STUDY AREA ................................................................................................................... 7 Physiographic Setting ..................................................................................................... 7 Streamflow Regulation ................................................................................................... 9 Sediment Supply ............................................................................................................. 9 Previous Geomorphic Investigations in Glen Canyon.................................................. 11 METHODS ...................................................................................................................... -
Chapter 3 – Affected Environment
Glen Canyon Dam Long-Term Experimental and Management Plan October 2016 Final Environmental Impact Statement 3 AFFECTED ENVIRONMENT Chapter 3 describes the environmental resources (physical, biological, cultural, recreational, and socioeconomic) that could be affected by the range of alternatives for implementing the Glen Canyon Dam Long-Term Experimental and Management Plan (LTEMP), as described in Chapters 1 and 2. The extent to which each specific resource may be affected by each alternative is discussed in Chapter 4, Environmental Consequences.1 3.1 PROJECT AREA The project area includes the area potentially affected by implementation of the LTEMP (including normal management and experimental operations of Glen Canyon Dam and non-flow actions). This area includes Lake Powell, Glen Canyon Dam, and the river downstream to Lake Mead (Figure 3.1-1). More specifically, the scope primarily encompasses the Colorado River Ecosystem, which includes the Colorado River mainstream corridor and interacting resources in associated riparian and terrace zones, located primarily from the forebay of Glen Canyon Dam to the western boundary of Grand Canyon National Park (GCNP). It includes the area where dam operations impact physical, biological, recreational, cultural, and other resources. This section of the river runs through Glen, Marble, and Grand Canyons in Coconino and Mohave Counties in northwestern Arizona. Although this EIS focuses primarily on the Colorado River Ecosystem, the affected area varies by resources and extends outside of the immediate river corridor for some resources and cumulative impacts. Portions of Glen Canyon National Recreation Area (GCNRA), GCNP, and Lake Mead National Recreation Area (LMNRA) outside the Colorado River Ecosystem are also included in the affected region for certain resources due to the potential effects of LTEMP operations. -
An Analysis of the Potential for Glen Canyon Dam Releases to Inundate Archaeological Sites in the Grand Canyon, Arizona
An Analysis of the Potential for Glen Canyon Dam Releases to Inundate Archaeological Sites in the Grand Canyon, Arizona Open-File Report 2014–1193 U.S. Department of the Interior U.S. Geological Survey Cover: View of the Colorado River and its left bank at river mile 72.7, looking north from Unkar Delta. Photograph taken by A. East, U.S. Geological Survey, May 3, 2013. An Analysis of the Potential for Glen Canyon Dam Releases to Inundate Archaeological Sites in the Grand Canyon, Arizona By Hoda A. Sondossi and Helen C. Fairley Open-File Report 2014–1193 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Sondossi, H.A., and Fairley, H.C., 2014, An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona: U.S. Geological Survey Open-File Report 2014-1193, 26 p., http://dx.doi.org/10.3133/ofr20141193. ISSN 2331-1258 (online) Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
The Colorado River in Grand Canyon: How Fast Does It Flow?
Grand Canyon Monitoring and Research Program The Colorado River U.S. Department of the Interior U.S. Geological Survey in Grand Canyon: How Fast Does It Flow? Opening the jet tubes at Glen Canyon Dam on March 26, 1996, released from Lake Powell a con- trolled flood of water that traveled down the Colorado River in Grand Canyon. How fast did the water move? How long did it take for water to reach a particular point along the river? The answers to these questions are important because the speed of river water affects the amount of physical and chemical changes, such as warming by sunlight, that the water will undergo as it moves downstream. Also, very fine particles and substances dissolved in the water travel along with the water, and the speed of the water tells us how fast these move downstream. How is the Water Speed Athough the dye is easy to see where it is first put into the river, it quickly mixes with the much larger mass of river water and becomes invisible. The highest concentration Measured? at sampling sites was between 5 and 35 parts per billion. One part per billion is about equal to one drop in a backyard swimming pool. One way to measure the speed of water is to tag it with a harmless Glen Paria Canyon 114° UTAH ° ° ° substance that is easily identified and 37° 113 112 Ri Dam 111 ve measured with the proper instruments. ARIZONA r River Lees Ferry These substances are called water tracers gin PAGE and are commonly used in both ground Vir water and surface water to track the water movement.