Rethinking Water Storage on the Southern Colorado Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Rethinking Water Storage on the Southern Colorado Plateau Rethinking water storage on the southern Colorado Plateau Jack Schmidt https://qcnr.usu.edu/wats/colorado_river_studies/https://qcnr.usu.edu/wats/colorado_river_studies/ Fill Mead First -- establish Lake Mead as the primary reservoir storage facility; 2015 store water in Lake Powell only when Lake Mead is full. 2016 • Objectives • Expose Glen Canyon’s sandstone walls • Recreate natural flow, sediment transport, and temperature regime in Grand Canyon • Save water (300,000 – 600,000 af/yr) • Eliminate need for Glen Canyon Dam Adaptive Management Program Fill Mead First Proposal • Phase I – reduce storage in Lake Powell to minimum power pool elevation (3490 ft asl) • Phase II – reduce storage in Lake Powell to dead pool (3370 ft asl) • Phase III – drill new diversion tunnels and fully drain Lake Powell New York Times, May 20, 2016 ~0.49 M af/yr evaporated from Powell ~0.37 M af/yr seepage losses ~0.55 M af/yr saved Myers, 2010, Planning the Colorado River in a changing climate: reservoir loss New York Times, May 20, 2016 rates in Lakes Powell and Mead and their use in CRSS. Consulting report to GCI. Myers, 2013, Loss rates from Lake Powell and their impact on management of the Colorado River. Journal of the American Water Resources Association GRGr ?SRRGr CRC P ??E ?DDRH ?ER E ??tribsungaged ??Gstorage:long + ??Gstorge:short SJRB ??Gseepage CR LF = + ± ∆ − − Calculation of Water Savings by Myers (2010, 2013) = ± LossesPowell = E + G 770,000 af/yr (+60,000) = 500,000 af/yr + 270,000 af/yr (+60,000) LossesMead = E + G 880,000 af/yr = 810,000 af/yr + 70,000 af/yr LossesTotal = LossesPowell + LossesMead 1,600,000 to 1,700,000 af/yr = 770,000 af/yr (+60,000) + 880,000 af/yr Losses associated with ~500,000 af/yr present operating rules evaporation loss assumed Evaporation losses Estimated evaporation rates (1946-1955) Powell (4.5 ft/yr) Mead (6.8 ft/yr) Meyers and Nordenson, 1962, USGS Professional Paper Previous Studies of Evaporation at Lake Mead • Water budgets Anderson and Prichard (1951) = 5.3 ft/yr • Mass transfer Harbeck et al (1958) = 7.1 ft/yr (in 1953) • Energy budget Harbeck et al (1958) = 7.0 ft/yr ( average for 1941-1953) Westenberg et al (2006)* = 6.7 ft/yr (average for 1953-1973); 6.0 ft/yr (average for 1974-1994) Westenberg et al (2006) = 7.5 ft/yr (average for 1997-1999) CRSS = 6.6 ft/yr Annual energy-balance corrected evaporation rate, based on eddy covariance method Au Jun Au Au O Moreo and Swancar, 2013; Moreo, 2015 Evaporation = (evaporation rate) X (reservoir surface area) Moreo and Swancar, 2013; Moreo, 2015 2010-2015 ; average evaporation rate = 6.2 ft/yr Annual Lake Mead evaporation varied between Mar 2010 – F 2011 = [580,000 af] -- 6.8 ft/yr 520,000 and 590,000 af/yr Mar 2011 – F 2012 = [590,000 af] (Mar 2010 – F 2015) Mar 2012 – F 2013 = [590,000 af] Mar 2013 – F 2014 = [520,000 af] -- 5.7 ft/yr Mar 2014 – F 2015 = [500,000 af] Au Jun Au O Au Lake Mead Annual energy-balance corrected evaporation rate, based on eddy covariance method Moreo and Swancar, 2013; Moreo, 2015 Evaporation Studies at Lake Powell Jacoby et al (1977) = 5.8 ft/yr (average for 1962- 1975) • Evaporation pans • Mass transfer Reclamation (1986) used the Jacoby et al (1977) data to estimate an average rate of 5.7 ft/yr for 1965-1979. Evaporation at Lake Powell reported in Interim Shortage Guidelines EIS and in 24-Month Study Total annual evaporation used in CRSS = 4.0 ft/yr Evaporation at Lake Powell is often reported as “net,” which is total evaporation minus evapotranspiration that occurred before Glen Canyon Dam was constructed Total annual evaporation used in CRSS = 4.0 ft/yr Predam ET? This value is the net evaporation and does not include the estimated pre-dam evapotranspiration from the Colorado River and its floodplain Most recent evaporation measurements at each reservoir Lake Mead (2010-2015) most probable average annual rate = 6.2 ft/yr Lake Powell (1965-1979 average annual rate = 5.7 ft/yr Surface area of Lake Powell > Lake Mead when reservoir storage is more than 10,000,000 af Under the assumed rule of equalizing the storage contents of Lake Powell and Lake Mead … when total active storage is 40% of P/M when total active storage is 30% of P/M capacity (~20,100,000 af; ~10.1 maf in capacity (~15,100,000 af; ~7.5 maf in each) each) Evaporation from Powell is 350,000 – Evaporation from Powell is 420,000 – 470,000 af/yr 560,000 af/yr Evaporation from Mead is 420,000 – Evaporation from Mead is 500,000 – 460,000 af/yr 530,000 af/yr when total active storage is 50% of P/M capacity (~25,100,000 af; ~12.6 maf in each) Evaporation from Powell is 490,000 – 650,000 af/yr Evaporation from Mead is 560,000 – 600,000 af/yr When total active storage is 40% capacity: Equalization: Powell evaporation = 420,000-560,000 af/yr Mead evaporation = 500,000 – 530,000 af/yr Fill Mead First proposal*: Powell evaporation = 240,000-320,000 af/yr Mead evaporation = 650,000 – 710,000 af/yr Evaporation losses might be reduced if water is preferentially stored in Lake Mead rather than distributing the water in both reservoirs, but uncertainty is very high * Phase I proposal Conclusions • Under FMF, reduced storage and reduced evaporation in Lake Powell is approximately matched by increased evaporation from Lake Mead. • Under Phase I or Phase II of FMF, it cannot be demonstrated that the total evaporation from the two reservoirs would be significantly different from the estimated losses under the equalization rule. • The uncertainty in these estimates is large. • State-of-the-science measurements of evaporation are made at Lake Mead; a similar measurement program is not in place at Lake Powell. Movement of Reservoir Water into Surrounding Ground Water Jacoby et al., 1977 Movement of reservoir water into surrounding ground- water system is inevitable Losses Associated with Ground-Water Movement into Surrounding Bedrock Ground water from the north flows towards Lake Powell Blanchard, 1986 Thomas, 1986 Reservoir water seeps around Glen Canyon Dam and enters the Colorado River upstream from Lees Ferry Thomas, 1986 Note: USGS measured stream flow below CR below dam = 36.6 mil af GCD and at Lees Ferry (Mar 2000 – Au 2004) CR @ Lees Ferry = 37.0 mil af Gaging studies to determine reservoir seepage delivered back into Colorado River CR below dam = 28.6 mil af CR @ Lees Ferry = 28.6 mil af S 13, 1989 – Mar 31, 1993 CR below dam = 36.6 mil af CR @ Lees Ferry = 37.0 mil af Mar 1, 2000 – Au 2, 2004 Estimated water savings associated with lowering or draining Lake Powell are based on assuming that past rates of ground-water storage will continue in the future. This is unlikely. Future ground-water movement estimated 50,000 af/yr, decreasing to 30,000 af/yr after mid-century. Estimated water savings associated with lowering or draining Lake Powell are based on assuming that past rates of ground-water storage will continue in the future. This is unlikely. Future ground-water movement estimated 50,000 af/yr, decreasing to 30,000 af/yr after mid-century. Summary of ground-water modeling studies conducted by USGS in 1980s Gstorage:short Transient (comes and goes) Gstorage:long Gstorage:intermediate 50,000 af/yr, declining to 30,000 af/yr after ~2030 [Thomas, 1986] 700,000 af/yr (1965-1975) [Jacoby et al., 1977] 380,000 af/yr (1965-1985) [Thomas, 1986] Conclusions Concerning Ground Water at Lake Powell • G round water moves from Lake Powell into the surrounding Navajo sandstone. • The rate that ground water moves into the surrounding bedrock is relatively slow and is likely to have declined with time. • Most studies have estimated that equilibrium conditions are likely to take many centuries to develop. A proportion of ground-water storage is better considered long-term bank storage and is not available to meet decadal-scale water supply needs. • Changes in ground-water storage are likely to occur as far as 20 miles from the reservoir. • There is no evidence of bank seepage losses from Lake Powell, except around the north side of Glen Canyon Dam. That water seeps back into the Colorado River upstream from Lees Ferry. • No studies have described ground-water movement south from Lake Powell or around the south side of Glen Canyon Dam. Lake Mead Accounting surface defines those wells distant from the river and reservoirs whose water partly comes from the Colorado River Wiele et al., 2009 Although the spatial extent of the saturated alluvium has been defined, no modern studies of ground-water movement have been conducted. Wiele et al., 2009 What would happen in Grand Canyon if Lake Powell were partially drained? waterfall waterfall Lake Powell surface area: Full – 251 mi2 Minimum power pool – 77 mi2 Dead pool – 32 mi2 June 2003 March 2004 8-17-04 Fine sediment remobilization in Lake Powell under drawdown 6-29-02 2-10-03 8-16-03 8-17-04 Dohrenwend, unpubl Pratson et al., 2008 Phase I Phase II The lower reservoir levels of Phase I and Phase II would cause the San Juan and Colorado Rivers to incise into their deltas. The mobilized fine sediment would form new deltas within the lowered reservoir. Downstream releases would be clear water. Phase I Phase II The lower reservoir levels of Phase I and Phase II would cause the San Juan and Colorado Rivers to incise into their deltas.
Recommended publications
  • Colorado River Basin Update
    Colorado River Basin Update Wyoming Water Development Commission and Select Water Committee – Joint Meeting 13 May, 2021 Outline 1. Update on current hydrology 2. Current Topics A. Demand Management ( Wyoming and UCRC efforts) B. Drought Response Operations C. Discussion on Curtailment Procedures i. Discussions with Reclamation on Fontenelle Reservoir D. Discussion on post-2026 river operations E. Lake Powell Pipeline discussions 3. Wrap-Up 4. Q&A Upper Basin Drought Contingency Plan Three Elements A. Augmentation B. Demand Management Storage Agreement C. Drought Response Operations Agreement Demand Management A. Wyoming Discussions (support provided by UW extension) 1. Public meetings held during the fall of 2019 • Heard interest from water users in discussing both demand management and curtailment 2. Worked with key stakeholder group as well as focus groups on specific topics 3. Draft report prepared by UW team; final report out soon • Provides summary of public input and some recommendations on next steps • Will not address ultimate feasibility of Demand Management in Wyoming. More investigation still needed. B. UCRC effort 1. Four UB states & UCRC staff working with team of consultants to determine feasibility (technical, legal, policy and economic issues) 2. To be completed by fall of 2022 Drought Response Operations Navajo Reservoir Flaming Gorge Blue Mesa Reservoir Reservoir Agree on operations to implement under emergency conditions to maintain minimum power pool elevation at Lake Powell. By conserving water (temporarily) in Lake Powell or moving water available from upper CRSP facilities. Lake Powell Drought Response Operations A. Agreement Establishes a process to rely on available water in the CRSPA Initial Units as needed to reduce the risk of Lake Powell dropping below elevation 3,525’.
    [Show full text]
  • January 13, 2021 Executive Director's Report
    EXECUTIVE DIRECTOR’S REPORT TO THE COLORADO RIVER BOARD OF CALIFORNIA January 13, 2021 COLORADO RIVER BASIN WATER SUPPLY CONDITIONS REPORT As of January 4th, the surface water elevation at Lake Powell was 3,581.80 feet with 10.1 million- acre feet (MAF) of storage, or 42% of capacity. The surface water elevation at Lake Mead was 1,083.89 feet with 10.34 MAF of storage, or 40% of capacity. As of January 3rd, the total system storage was 27.50 MAF, or 46% of capacity, which is about 3.8 MAF less than the total system storage at this same time last year. As of January 6th, the Upper Basin reservoirs, excluding Lake Powell, ranged from 53% of capacity at Fontenelle Reservoir in Wyoming; 84% of capacity at Flaming Gorge Reservoir in Wyoming and Utah; 92% of capacity at Morrow Point, and 48% of capacity at Blue Mesa Reservoir in Colorado; and 63% of capacity at Navajo Reservoir in New Mexico. As of December 16, 2020, the forecasted unregulated inflow into Lake Powell for Water Year (WY) 2021 is 6.23 MAF (58% of normal). The forecasted April through July 2021 runoff into Lake Powell for Water Year-2021 is 4.05 MAF (57% of normal). For WY-2021, the November observed Lake Powell inflow was 0.26 MAF (55% of normal), and the December Lake Powell inflow forecast is 0.21 MAF (58% of normal). To date, WY-2021 precipitation is 65% and the current basin snowpack is 75% of normal. Colorado Basin River Forecast Center Webinar On January 8th, the Colorado Basin River Forecast Center (CBRFC) held a webinar to review the Basin’s current water supply conditions and forecasts.
    [Show full text]
  • Annual Report of Operations for Flaming Gorge Dam Water Year 2013
    Annual Report of Operations For Flaming Gorge Dam Water Year 2013 U.S. Department of the Interior January 2015 Bureau of Reclamation Table of Contents Annual Report of Operations for Flaming Gorge Dam ............................................................ 1 Operational Decision Process for Water Year 2013 ................................................................. 2 Step 1: Flow Requests for Research, and Other Federal, State and Stakeholder Input ........ 2 Step 2: Development of Spring Proposal .............................................................................. 4 Step 3: Solicitation of Comments ........................................................................................ 4 Step 4: Final Decision .......................................................................................................... 4 Basin Hydrology and Operations .............................................................................................. 5 Progression of Inflow Forecasts............................................................................................ 5 Summary of Flaming Gorge Operations ............................................................................... 6 Spillway Inspection ............................................................................................................... 8 Flow Objectives Achieved in Water Year 2013 ....................................................................... 8 Spring Flow Objectives......................................................................................................
    [Show full text]
  • Arizona Fishing Regulations 3 Fishing License Fees Getting Started
    2019 & 2020 Fishing Regulations for your boat for your boat See how much you could savegeico.com on boat | 1-800-865-4846insurance. | Local Offi ce geico.com | 1-800-865-4846 | Local Offi ce See how much you could save on boat insurance. Some discounts, coverages, payment plans and features are not available in all states or all GEICO companies. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. GEICO is a registered service mark of Government Employees Insurance Company, Washington, D.C. 20076; a Berkshire Hathaway Inc. subsidiary. TowBoatU.S. is the preferred towing service provider for GEICO Marine Insurance. The GEICO Gecko Image © 1999-2017. © 2017 GEICO AdPages2019.indd 2 12/4/2018 1:14:48 PM AdPages2019.indd 3 12/4/2018 1:17:19 PM Table of Contents Getting Started License Information and Fees ..........................................3 Douglas A. Ducey Governor Regulation Changes ...........................................................4 ARIZONA GAME AND FISH COMMISSION How to Use This Booklet ...................................................5 JAMES S. ZIELER, CHAIR — St. Johns ERIC S. SPARKS — Tucson General Statewide Fishing Regulations KURT R. DAVIS — Phoenix LELAND S. “BILL” BRAKE — Elgin Bag and Possession Limits ................................................6 JAMES R. AMMONS — Yuma Statewide Fishing Regulations ..........................................7 ARIZONA GAME AND FISH DEPARTMENT Common Violations ...........................................................8 5000 W. Carefree Highway Live Baitfish
    [Show full text]
  • Trip Planner
    National Park Service U.S. Department of the Interior Grand Canyon National Park Grand Canyon, Arizona Trip Planner Table of Contents WELCOME TO GRAND CANYON ................... 2 GENERAL INFORMATION ............................... 3 GETTING TO GRAND CANYON ...................... 4 WEATHER ........................................................ 5 SOUTH RIM ..................................................... 6 SOUTH RIM SERVICES AND FACILITIES ......... 7 NORTH RIM ..................................................... 8 NORTH RIM SERVICES AND FACILITIES ......... 9 TOURS AND TRIPS .......................................... 10 HIKING MAP ................................................... 12 DAY HIKING .................................................... 13 HIKING TIPS .................................................... 14 BACKPACKING ................................................ 15 GET INVOLVED ................................................ 17 OUTSIDE THE NATIONAL PARK ..................... 18 PARK PARTNERS ............................................. 19 Navigating Trip Planner This document uses links to ease navigation. A box around a word or website indicates a link. Welcome to Grand Canyon Welcome to Grand Canyon National Park! For many, a visit to Grand Canyon is a once in a lifetime opportunity and we hope you find the following pages useful for trip planning. Whether your first visit or your tenth, this planner can help you design the trip of your dreams. As we welcome over 6 million visitors a year to Grand Canyon, your
    [Show full text]
  • Grand Canyon Helicopter Tours
    GRAND CANYON HELICOPTER TOURS * * $289 Adult • $269 Child (Ages 2 - 11) + $35 Fees $364 Adult • $344 Child (Ages 2 - 11) + $80 Fees GRAND CANYON SOAR LIKE AN EAGLE THROUGH THE GRAND CANYON • Descend 4,000 feet into the Grand Canyon MOST AND SEE THE BEAUTIFUL BOWL OF FIRE. • Touch down by the banks of the Colorado River POPULAR • Champagne picnic under an authentic Hualapai Indian shelter TOUR! & Las Vegas Tours • Air only excursion through the Grand Canyon • Views of Lake Mead, Hoover Dam, Fortication Hill and the Grand Wash Clis • Views of Lake Mead, Hoover Dam, Fortification Hill and the Grand Wash Clis • Tour Duration: Approximately 4 hours (hotel to hotel) World’s Largest Grand Canyon Air Tour Company, since 1965! • Tour Duration: Approximately 3 hours (hotel to hotel) • $40 SUNSET UPGRADE (PBW-4S) • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-1) $404 Adult • $384 Child (ages 2-11) + $80 Fees $349 Adult • $329 Child (Ages 2-11) + $40 Fees • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-4) $414 Adult • $394 Child (ages 2-11) + $80 Fees • ADD LIMO TRANSFERS, SUNSET & STRIP FLIGHT (PLW-4S) $454 Adult • $434 Child (ages 2-11) + $80 Fees $94 Adult • $74 Child (Ages 2 - 11) + $10 Fees TAKE TO THE SKIES OVER THE DAZZLING AND WORLD FAMOUS LAS VEGAS "STRIP"! • Views of the MGM, New York New York, Caesar’s Palace, Bellagio, Mirage and more • Fly by the Stratosphere Tower and downtown Glitter Gulch where Las Vegas began • Complimentary champagne toast L’excursion aérienne Die vielseitigste Papillon- Veleggiate al di sotto del キャニオン上空を低 La visita aérea más • Tour Duration: Approx.
    [Show full text]
  • Alterna`Ve Views of Colorado Plateau and Rio Grande Rift
    Parks from Space:Parks from Space: Alternave Views of Colorado Plateau and Rio Grande Ri Parklands Using Remote Sensing Imagery and Astronaut Photographs Joseph F. Reese, Geosciences Department, Edinboro University of PA • In this presenta,on, I will show several parklands of the Colorado Plateau and Rio Grande Ri: from a dis,nctly alterna,ve perspec,ve ‐‐ Space. Remote sensing imagery and astronaut photographs give a unique view of some of our con,nent's most recognizable landscapes. Rocky Mountains Tectonic Map of North America, (from the Space Shule) Central Rocky Mountains PHOTOGRAPHS and IMAGES OBTAINED FROM: EARTH SCIENCES AND IMAGE ANALYSIS LAB: “The Gateway to Astronaut Photography of Earth” hp://eol.jsc.nasa.gov (several capons are from this source) Space Shule and Internaonal Space Staon photographs taken by astronauts EARTH OBSERVATORY / VISIBLE EARTH: hp://earthobservatory.nasa.gov (some capons are from this source) hp://visibleearth.nasa.gov (some capons are from this source) satellite imagery from Landsat 7, MODIS, MISR, SeaWIFS Jet Propulsion Lab – ASTER: hp://asterweb.jpl.nasa.gov/gallery/ FIELD and AERIAL PHOTOS and FIGURES from: Yann Arthus‐Bertrand, Russ Finley, Lou Maher, John Shelton, Chernicoff (text), Plummer and McGeary (text), Tarbuck and Lutgens (text), United States Geological Survey, and various other texts and websites! Physiographic Map of the Lower 48 States, USA Colorado Plateau Colorado Plateau Locaon map of Naonal Parks in Western U.S. This natural‐color image combines data from over 500 Mul‐angle Imaging Spectro‐Radiometer (MISR) orbits with shaded relief Digital Terrain ElevaGon models from the ShuDle Radar Topography Western Mission (SRTM) and other North America sources.
    [Show full text]
  • Quaternary Geology and Geomorphology of the Nankoweap Rapids Area, Marble Canyon, Arizona
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2608 U.S. GEOLOGICAL SURVEY QUATERNARY GEOLOGY AND GEOMORPHOLOGY OF THE NANKOWEAP RAPIDS AREA, MARBLE CANYON, ARIZONA By Richard Hereford, Kelly J. Burke, and Kathryn S. Thompson INTRODUCTION sion elsewhere in Grand Canyon {Hereford and oth­ ers, 1993; Fairley and others, 1994, p. 147-150). The Nankoweap Rapids area along the Colorado River {fig. 1) is near River Mile 52 {that is 52 mi or 83 km downstream of Lees Ferry, Arizona) in Grand Canyon National Park {west bank) and the Navajo METHODS Indian Reservation {east bank). Geologic mapping and [See map sheet for Description of Map Units] related field investigations of the late Quaternary geo­ morphology of the Colorado River and tributary A variety of methods were used to date the de­ streams were undertaken to provide information about posits. Radiocarbon dates were obtained from char­ the age, distribution, and origin of surficial deposits. coal and wood recovered from several of the mapped These deposits, particularly sandy alluvium and closely units (table 1). Several of these dates are not defini­ related debris-flow sediment, are the substrate for tive as they are affected by extensive animal bur­ riparian vegetation, which in turn supports the eco­ rowing in the alluvial deposits that redistributed burnt system of the Colorado River (Carothers and Brown, roots of mesquite trees, giving anomalous dates. The 1991, p. 111-167). late Pleistocene breccia (units be and bf) and re­ Closure of Glen Canyon Dam {109 km or 68 lated terraces were dated by Machette and Rosholt mi upstream of the study area) in 1963 and subse­ (1989; 1991) using the uranium-trend method.
    [Show full text]
  • Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California
    Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California By Paul Stone, Calvin H. Stevens, Paul Belasky, Isabel P. Montañez, Lauren G. Martin, Bruce R. Wardlaw, Charles A. Sandberg, Elmira Wan, Holly A. Olson, and Susan S. Priest Pamphlet to accompany Scientific Investigations Map 3298 2014 U.S. Department of the Interior U.S. Geological Survey Cover View of Marble Canyon area, California, showing dark rocks of Mississippian Indian Springs Formation and Pennsylvanian Bird Spring Formation overlying light rocks of Mississippian Santa Rosa Hills Limestone in middle distance. View is southeast toward Emigrant Wash and Tucki Mountain in distance. U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Stone, P., Stevens, C.H., Belasky, P., Montanez, I.P., Martin, L.G., Wardlaw, B.R., Sandberg, C.A., Wan, E., Olson, H.A., and Priest, S.S., 2014, Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California: U.S. Geological Survey Scientific Investigations Map 3298, scale 1:24,000, 59 p., http://dx.doi.org/10.3133/sim3298.
    [Show full text]
  • Colorado River Basin: System Status Update and Outlook for 2018 and 2019
    Colorado River Basin: System Status Update and Outlook for 2018 and 2019 Daniel Bunk River Operations Manager Boulder Canyon Operations Office, Lower Colorado Region Colorado River Citizens Forum in Yuma, Arizona January 24, 2018 Topics • Overview of the Colorado River Basin • Colorado River Drought • Projected Conditions • Drought Response Activities • Summary 2 Overview of the Colorado River System • 16.5 million acre-feet (maf) allocated annually - 7.5 maf each to Upper and Lower Basins and 1.5 maf to Mexico - 13 to 14.5 maf of basin-wide consumptive use annually • 16 maf average annual “natural flow” (based on historical record) - 14.8 maf in the Upper Basin and 1.3 maf in the Lower Basin • Inflows are highly variable year to year • 60 maf of storage (nearly 4-times the annual inflow) • The System is operated on a type hydrologic budget 3 Natural Flow Colorado River at Lees Ferry Gaging Station, Arizona Water Year 1906 to 2018 Colorado River at Lees Ferry, AZ - Natural Flow 30 30 Average 10-yr Moving Average 25 25 20 20 15 15 Annual Annual Flow(MAF) 10 10 5 5 0 0 Water Year Provisional data, subject to change Estimated values for 2016-2018 4 Water Budget at Lake Mead Given current water demands in the Lower Basin and Mexico, and a minimum objective release from Lake Powell (8.23 maf), Lake Mead storage declines by about 1.2 maf annually (equivalent to about 12 feet in elevation). Inflow 9.0 maf (Powell release + side inflows above Mead) Outflow -9.6 maf (Lower Division State apportionments and Mexico Treaty allocation, plus balance of downstream regulation, gains, and losses) Mead evaporation loss -0.6 maf Balance -1.2 maf 5 Lake Mead End of Month Elevation 1,225 Spillway Crest 1221 ft 1,200 1,175 September 1999 December 2017 39% of Capacity 1,150 95% of Capacity 1,125 1,100 Elevation (ft) Elevation 1,075 1,050 Prior to 1999, Lake Mead was last at elevation 1,082.52 feet in June 1937.
    [Show full text]
  • Executive Summary U.S
    Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement 1 CONTENTS 2 3 4 ACRONYMS AND ABBREVIATIONS .................................................................................. vii 5 6 ES.1 Introduction ............................................................................................................ 1 7 ES.2 Proposed Federal Action ........................................................................................ 2 8 ES.2.1 Purpose of and Need for Action .............................................................. 2 9 ES.2.2 Objectives and Resource Goals of the LTEMP ....................................... 3 10 ES.3 Scope of the DEIS .................................................................................................. 6 11 ES.3.1 Affected Region and Resources .............................................................. 6 12 ES.3.2 Impact Topics Selected for Detailed Analysis ........................................ 6 13 ES.4
    [Show full text]
  • Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And
    1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail.
    [Show full text]