Lasers, Z-Pinches, and Nuclear Weapons: the Importance of Plasma Physics to the National Nuclear Security Administration

Total Page:16

File Type:pdf, Size:1020Kb

Lasers, Z-Pinches, and Nuclear Weapons: the Importance of Plasma Physics to the National Nuclear Security Administration Lasers, Z-Pinches, and Nuclear Weapons: The Importance of Plasma Physics to the National Nuclear Security Administration Dr. Sarah L. Nelson Office of Experimental Sciences (on detail to NA-19) November 18, 2020 Michigan Institute for Plasma Science and Engineering (MIPSE) Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 1 About the Speaker A BIG thank you to: . HQ – Njema Frazier, Bryan Sims, Paul Davis . LLNL – Alan Wan, John Edwards, Heather Whitley . LANL – Kim Scott, Brian Albright, Sean Finnegan . SNL – Dan Sinars, Greg Rochau, Mike Cuneo, Matt Gomez . LLE – probably someone I missed… . UM and MSU, Prof. Kushner, Julia Falkovitch-Khain, for the gracious invitation and for the multiple reminders… Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 2 About the Speaker . Bachelor of Science in Chemistry from University of California, Santa Barbara (w/Distinction) . PhD in Nuclear Chemistry from University of California, Berkeley . Roger Batzel Postdoctoral Fellow at Lawrence Livermore National Laboratory . Staff Scientist with Pacific Northwest National Laboratory . Joined NNSA in 2015 • Deputy Director of NA-113, Office of Experimental Sciences • On detail to NA-19, Ofc. Of Production Modernization This talk is unclassified. DC - SLN Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 3 Research Background, Nuclear Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 4 Research Background, Nuclear + Pulsed Power - Collection of Debris Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 5 Research Background, Nuclear + Pulsed Power, con’t. - Collection of Debris Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 6 Research Background, Nuclear + Pulsed Power, con’t. - Collection of Debris Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 7 OK great, but what does this have to do with Stockpile Stewardship? or – why I’m really “here” today… Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 8 Birth of Science-Based Stockpile Stewardship . Oct 1991 Soviet Secretary General Mikhail Gorbachev declared moratorium on Soviet nuclear weapons tests . 1992 President George H. W. Bush declared moratorium on U.S. nuclear weapons tests . 1996 Comprehensive Test Ban Treaty signed but not ratified . In the 1990s, the Department of Energy created the science-based Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 9 The Stockpile Stewardship Program (SSP) . SSP is designed to increase our confidence in the assessment of the safety, security and reliability of the stockpile . Provides the technical basis to inform the President as to the state of the U.S. deterrent and whether there is a technical need to resume nuclear testing . Over the past decade, U.S. policy has included: . No nuclear testing (since September 1992) . No new weapon development (no new weapons produced since 1991) . Limited production capability for re-manufacturing Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 10 What is Stockpile Stewardship? (Think - High-End Sports Car) Safe, secure, and effective? 2020 Alfa Romeo 6C photo – autoevolution.com Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 11 Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 12 A major focus area for the NNSA is in understanding the properties of high energy density plasmas (HEDP) . High energy density (HED) plasmas are defined as media with energy density greater than 0.1 trillion J/cubic meter—more than 20x the pressure needed to make a diamond . Achieving the extreme states of matter relevant to understanding nuclear weapons is made NIF possible with HED facilities such as Omega, Z, and NIF . Why? Z Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 13 Because - the majority of the yield of a nuclear weapon occurs in the HED state Primary phase Energy transfer Super-critical assembly X-rays transfer energy from Primary energy production primary to secondary Secondary phase HE phase Nuclear Phase High explosive creates Secondary produces energy, supercritical assembly (UGTs, NIF, Z, Omega) explosion and radiation Pre-nuclear phase (UGTs, sub-crits, DARHT, JASPER, etc.) Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 14 To maintain deterrence the US must maintain preeminence in weapon Science, Technology, & Engineering ST&E delivers validated physics modeling capabilities in support of Advanced Simulation Capability stockpile missions: • Improve and modernize assessment and certification of US stockpile National Ignition • Enable future life-extension Facility options • Anticipate and respond to technical surprises and technology advances Advanced radiography (DARHT ) • Recruit, train, and retain world- class next-generation stewards Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 15 So how do you do that? I’m with the Federal Government, I’m here to help. Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 16 DOE/NNSA Mission Pillars and Cross-cutting Capabilities Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 17 DOE/NNSA Leadership Secretary, DOE Confirmed – December 2, 2019 Acting Under Secretary for Nuclear Security & Acting Administrator, NNSA Confirmed - May 23, 2019 (as Deputy) Deputy Administrator for Defense Programs, NNSA Confirmed – Sept. 18, 2018 Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 18 Stockpile Research, Technology, and Engineering (SRT&E) Certifying the Stockpile – Preparing for the Future Advanced Manufacturing Engineering Development Delivers technology solutions that Delivers modern technologies facilitate surety, surveillance, necessary to enhance secure survivability, and testing throughout the manufacturing capabilities and weapon lifecycle to provide timely support to critical needs of the stockpile Inertial Confinement Fusion Assessment Science Delivers high energy density Delivers weapons-relevant data, physics platforms to access models, methods and extreme conditions essential to capabilities that increase assessing weapons confidence in annual assessments and certification of refurbished weapons, explore Advanced Simulation and future LEP options, and facilitate Computing Significant Finding Investigations Delivers computer platforms and closure for Nuclear Explosives integrated codes with models and Package issues algorithms to facilitate assessment of weapon systems Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 19 Five Critical Elements of Science-Based Stewardship ENABLE QUANTIFY PROVIDE BUILD & ENSURE STOCKPILE WEAPONS SCIENTIFIC MAINTAIN STEWARDSHIP MISSIONS PHENOMENA DETERRENCE EXPERIMENTAL SUSTAINABILITY TOOLS FOR THE COMPLEX Support for LEPs Thermonuclear Burn Weapons Physics Facilities Process Options for stockpile Radiation Transport Peer-review Targets Improvement modernization Radiation Exploration of extreme Optics Facility Diversity pressure/temp/density Scientific Hydrodynamics Diagnostics Recruitment, basis/certification/ Advanced R&D training, and Material, Plasma, and platforms qualification for new Nuclear Properties retention of technologies and Multiple approaches personnel Outputs, Environments to future multi-MJ reused components & Effects/ Nuclear yield Strong Academic pipeline Resolution of key Survivability Advanced Technology weapons performance R&D issues Predictive physics Test readiness models for design codes Uncertainty Office of Experimental SciencesQuantification | Office of Research, Development, Test, and Evaluation 20 Science Supporting Weapons Activities Life Extension and Knowledge Base Broad National Enduring Stockpile Responsiveness and Infrastructure Security Mission • Advances • Explores initial • Preserves the • Leverages scientific concepts to U.S. core resources to methods for enable life- intellectual and address emerging nuclear weapons extension technical nuclear security assessments modifications to competencies in threats • Develops the stockpile nuclear weapons • Supports the advanced • Researches and • Recruits and assessment of capabilities to develops new trains new foreign and enable the technologies for generation of adversary nuclear resolution of future stockpile scientists, weapons for significant finding needs engineers, and intelligence investigations technicians activities Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation 21 Weapons Activities & SRT&E Secure Information Legacy Transportation Technology and Contractor Defense Nuclear Asset Cybersecurity Pensions Security 3% 2% 1% 7% Dr. Mark C. Anderson, SES Assistant Deputy Research, Development, Administrator for Stockpile Stockpile Test and Evaluation Research, Technology, and Management (non-OES) Engineering 34% 10% Research, Development, Test and Evaluation (OES) 9% Infrastructure and Operations Production 21% Modernization Dr. Njema J. Frazier, SES 13% Director,
Recommended publications
  • Weapons Summary Final 5.30.Indd
    Workshop on U.S. Nuclear Weapons Stockpile Management Summary Report November 10, 2011 Summary Report Workshop on U.S. Nuclear Weapons Stockpile Management November 10, 2011 Sponsored by the american association for the advancement of Science, the hudson institute center for political- Military analysis and the Union of concerned Scientists Acknowledgments the center for Science, technology, and Security policy (cStSp) at the american association for the advancement of Science (AAAS) gratefully acknowledges support from the carnegie corporation of New york and the John D. and catherine t. Macarthur Foundation. also, the Union of concerned Scientists (UcS) wishes to thank the colombe Foundation, the David and katherine Moore Family Foundation, inc., the ploughshares Fund, and the prospect hill Foundation for their sustaining support. summaRy RepoRt: WoRkShop oN U.S. N UcleaR Weapons Stockpile Ma NageMeNt | i Introduction on November 10, 2011, the center for Science, technology, and Security policy at the american association for the advancement of Science (AAAS), the hudson institute center for political- Military analysis and the Union of concerned Scientists (UcS) hosted a workshop to discuss the future of the Department of energy’s stockpile management program.1 the meeting was unclassified and off the record.t o allow free discussion, it was carried out under the chatham house Rule in which statements made during the meeting (such as those reported here) can be cited but not attributed to individual speakers. in addition to those from
    [Show full text]
  • Footnotes for ATOMIC ADVENTURES
    Footnotes for ATOMIC ADVENTURES Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey into the Wild World of Nuclear Science By James Mahaffey While writing ATOMIC ADVENTURES, I tried to be careful not to venture off into subplots, however interesting they seemed to me, and keep the story flowing and progressing at the right tempo. Some subjects were too fascinating to leave alone, and there were bits of further information that I just could not abandon. The result is many footnotes at the bottom of pages, available to the reader to absorb at his or her discretion. To get the full load of information from this book, one needs to read the footnotes. Some may seem trivia, but some are clarifying and instructive. This scheme works adequately for a printed book, but not so well with an otherwise expertly read audio version. Some footnotes are short enough to be inserted into the audio stream, but some are a rambling half page of dense information. I was very pleased when Blackstone Audio agreed wholeheartedly that we needed to include all of my footnotes in this version of ATOMIC ADVENTURES, and we came up with this added feature: All 231 footnotes in this included text, plus all the photos and explanatory diagrams that were included in the text. I hope you enjoy reading some footnotes while listening to Keith Sellon-Wright tell the stories in ATOMIC ADVENTURES. James Mahaffey April 2017 2 Author’s Note Stories Told at Night around the Glow of the Reactor Always striving to beat the Atlanta Theater over on Edgewood Avenue, the Forsyth Theater was pleased to snag a one-week engagement of the world famous Harry Houdini, extraordinary magician and escape artist, starting April 19, 1915.1 It was issued an operating license, no.
    [Show full text]
  • 1958 Geneva Conference on the Discontinuation of Nuclear Weapons
    1 2 3 4 5 6 7 8 Presidential Decisions on Stockpile Stewardship Test-Based Stewardship and the Cold War Transitioning to Stockpile Stewardship Science: Research, Development, and Technology Deterrence and the Life Extension Program Global Nuclear Security Timeline of U.S. Stockpile Stewardship Innovation The Path Forward Today, I am announcing my “decision to negotiate a true zero-yield comprehensive test ban.” U.S. President Bill Clinton, August 11, 1995 The National Defense Authorization Act for fiscal year 1994 (P.L. 103-160) estab- lished the Stockpile Stewardship Program (SSP) to sustain the nuclear deterrent in the absence of nuclear explosive testing. The SSP supports U.S. national security missions through leading-edge scientific, engineering, and technical tools and expertise – a U.S. response to the end of the Cold War and the need to remake the global nuclear landscape. One year later, on August 11, 1995, Presi- dent Bill Clinton announced that the United States would support a “zero yield” Compre- hensive Nuclear-Test-Ban Treaty (CTBT): “I am assured by the Secretary of Energy and the Directors of our nu- clear weapons labs that we can meet the challenge of maintaining our nuclear deterrent under a Compre- hensive Test-Ban Treaty through a Science-Based Stockpile Stewardship program without nuclear testing.” This year, the Nation and the Department of Energy (DOE) celebrate the 20th anniver- sary of that announcement and the scientific and technical capabilities that have devel- oped to support this policy direction. The national investment in stockpile stewardship has enabled resolution of many stockpile issues and provided more detailed knowledge than what could have been attained through nuclear explosive testing.
    [Show full text]
  • Nuclear Weapons Technology 101 for Policy Wonks Bruce T
    NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex .
    [Show full text]
  • Ocontract No. DE-NA0001942 Section J, Appendix A, Page I SECTION J
    oContract No. DE-NA0001942 SECTION J APPENDIX A STATEMENT OF WORK (0015, 0018, 0075, 0104) Section J, Appendix A, Page i oContract No. DE-NA0001942 SECTION J APPENDIX A STATEMENT OF WORK Table of Contents CHAPTER I. Objectives, Scope, and Requirements ......................................................................... 1 1.0 OBJECTIVE ........................................................................................................................ 1 2.0 BACKGROUND ................................................................................................................. 2 2.1 The NNSA Mission ...................................................................................................... 2 2.2 The NNSA Organization .............................................................................................. 2 2.3 Becoming an Enterprise................................................................................................ 2 2.4 Location of Performance .............................................................................................. 3 3.0 SCOPE ................................................................................................................................. 3 3.1 Mission .........................................................................................................................4 3.2 Merging of Operations.................................................................................................. 5 3.3 Scope and Financial Management...............................................................................
    [Show full text]
  • Sidney D. Drell Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt0g5030h6 No online items Register of the Sidney D. Drell papers Finding aid prepared by Beth Goder Hoover Institution Library & Archives © 2012, 2021 434 Galvez Mall Stanford University Stanford, CA 94305-6003 [email protected] URL: http://www.hoover.org/library-and-archives Register of the Sidney D. Drell 80074 1 papers Title: Sidney D. Drell papers Date (inclusive): 1945-2017 Collection Number: 80074 Contributing Institution: Hoover Institution Library & Archives Language of Material: English . Physical Description: 62 manuscript boxes, 2 oversize boxes, 2 oversize folders(33.0 Linear Feet) Abstract: Speeches and writings, notes, correspondence, memoranda, reports, studies, and printed matter relating to scientific and technological aspects of United States national security and intelligence issues, including nuclear weapons, nuclear stockpile management, satellite reconnaissance, biological and chemical warfare issues, and terrorism issues. Also includes material relating to the dissident Soviet physicist Andreĭ Sakharov, and to efforts on his behalf by Western scientists. Includes writings and letters by Sakharov. Hoover Institution Archives Access The collection is open for research; materials must be requested at least two business days in advance of intended use. Publication Rights For copyright status, please contact the Hoover Institution Archives. Acquisition Information Acquired by the Hoover Institution Archives in 1980, with increments received in 1981 and 2016. Accruals Materials may have been added to the collection since this finding aid was prepared. To determine if this has occurred, find the collection in Stanford University's online catalog at https://searchworks.stanford.edu . Materials have been added to the collection if the number of boxes listed in the online catalog is larger than the number of boxes listed in this finding aid.
    [Show full text]
  • 108–650 Senate Hearings Before the Committee on Appropriations
    S. HRG. 108–650 Senate Hearings Before the Committee on Appropriations Energy and Water Development Appropriations Fiscal Year 2005 108th CONGRESS, SECOND SESSION H.R. 4614 DEPARTMENT OF DEFENSE—CIVIL DEPARTMENT OF ENERGY DEPARTMENT OF THE INTERIOR NONDEPARTMENTAL WITNESSES Energy and Water Development Appropriations, 2005 (H.R. 4614) S. HRG. 108–650 ENERGY AND WATER DEVELOPMENT APPROPRIATIONS FOR FISCAL YEAR 2005 HEARINGS BEFORE A SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE ONE HUNDRED EIGHTH CONGRESS SECOND SESSION ON H.R. 4614 AN ACT MAKING APPROPRIATIONS FOR ENERGY AND WATER DEVELOP- MENT FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 2005, AND FOR OTHER PURPOSES Department of Defense—Civil Department of Energy Department of the Interior Nondepartmental witnesses Printed for the use of the Committee on Appropriations ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 92–143 PDF WASHINGTON : 2005 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 COMMITTEE ON APPROPRIATIONS TED STEVENS, Alaska, Chairman THAD COCHRAN, Mississippi ROBERT C. BYRD, West Virginia ARLEN SPECTER, Pennsylvania DANIEL K. INOUYE, Hawaii PETE V. DOMENICI, New Mexico ERNEST F. HOLLINGS, South Carolina CHRISTOPHER S. BOND, Missouri PATRICK J. LEAHY, Vermont MITCH MCCONNELL, Kentucky TOM HARKIN, Iowa CONRAD BURNS, Montana BARBARA A. MIKULSKI, Maryland RICHARD C. SHELBY, Alabama HARRY REID, Nevada JUDD GREGG, New Hampshire HERB KOHL, Wisconsin ROBERT F. BENNETT, Utah PATTY MURRAY, Washington BEN NIGHTHORSE CAMPBELL, Colorado BYRON L.
    [Show full text]
  • Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats
    Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats FY 2018–FY 2022 Report to Congress November 2017 National Nuclear Security Administration United States Department of Energy Washington, DC 20585 Department of Energy/National Nuclear Security Administration | November 2017 Message from the Administrator The Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2018 report, Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats, outlines DOE/NNSA’s plans and programs to prevent the proliferation of nuclear weapons, counter the threat of nuclear terrorism, and respond to nuclear and radiological incidents around the world. The report is a companion to the Fiscal Year 2018 Stockpile Stewardship and Management Plan, which describes DOE/NNSA’s activities to ensure the reliability of the U.S. nuclear stockpile and maintain its foundational capabilities and infrastructure. In keeping with our commitment to transparency, updated versions of these reports are published each year. Maintaining the U.S. nuclear stockpile and reducing global nuclear threats—two missions that are often thought to involve different technical expertise and pursue disparate goals—are far more interconnected than they may appear. Many activities within these two DOE/NNSA mission pillars are mutually reinforcing and supportive of common objectives. The facilities and scientific knowledge that underpin stockpile stewardship, for example, are harnessed for a range of nonproliferation and counterterrorism missions, from assessing foreign weapons programs and potential terrorist devices to managing the proliferation risks posed by civil nuclear applications. Preventing the spread of nuclear weapons around the world yields considerable benefits for the U.S.
    [Show full text]
  • Stockpile Stewardshipquarterly
    DOE/NA-0066 Office of Research, Development, Test, and Evaluation Stockpile Stewardship Quarterly VOLUME 7 | NUMBER 4 | DECEMBER 2017 essage from the Assistant Deputy Administrator for Research, M Development, Test, and Evaluation, Dr. Kathleen Alexander In stockpile stewardship, one of the most Laboratory (LANL) takes a different focus, widely studied phenomena is the equation looking at the EOS and shock-driven of state (EOS). An EOS is a mathematical decomposition of ‘soft’ materials. LANL relationship that describes the state of uses a two-stage gas gun to collect shock matter (i.e., gas, liquid, or solid) using data of polymers to incorporate in their the material properties of temperature, EOS. volume, pressure, and internal energy. The The Joint Actinide Shock Physics EOS characterizes the properties of a state Experimental Research facility two-stage of matter under a given set of physical gas gun at Nevada National Security Site conditions. It is of interest for the metals (NNSS) is used for both hazardous and and non-metals of stockpile stewardship non-hazardous material studies for input application and is critical to understanding to EOS tables. Many EOS experiments Hong Sio, NNSA-supported senior Physics material behavior. Each of our weapon Department PhD student at the Massachusetts at NNSS involve dynamic materials and laboratories has extensive EOS activities. Institute of Technology (second from left) associated diagnostic developments found time to strike a pose with (left to This issue of the Stockpile Stewardship pertaining to stockpile materials. right) Dr. Njema Frazier and Dr. Bryan Sims Quarterly (SSQ) highlights representative (Research, Development, Test, and Evaluation) EOS activities at our national laboratories, Some of our innovative EOS work origi- and Mark Visosky (TechSource, Inc.) at the the Nevada National Security Site, and nated from the LDRD program projects at 59th Annual Meeting of the American Physical in the Laboratory Directed Research and Sandia.
    [Show full text]
  • Challenges Facing Stockpile Stewardship in the Second Nuclear Age
    Challenges Facing Stockpile Stewardship in the Second Nuclear Age WELCOME to this issue of National Security Science. is issue is in celebration of the rst Los Alamos Primer lectures, which took place 71 years ago in the spring of 1943. ese lectures were held in conjunction with the start-up of “Project Y,” which was part of the Manhattan Project. Project Y would eventually become Los Alamos National Laboratory. e U.S. entry into the Atomic Age had been slow and cautious. But when the United States entered World War II and faced the carnage of the war, ghting and genocide had already claimed millions of lives. Obtaining the bomb before Nazi Germany or Imperial Japan was imperative. e brightest students (their average age was 24) were recruited from the nation’s best colleges and universities. ey were joined by other recruits: some of the world’s preeminent scientists—for example, Enrico Fermi, Hans Bethe, Edward Teller, and Stanislaw Ulam—many of them refugees from Nazi Germany. e recruits were told very little other than that their work might bring an end to the war. ey were given one-way train tickets to the tiny town of Lamy, New Mexico, just south of Santa Fe. ere they were met by government agents and spirited away to an undisclosed location in the mountains northwest of Santa Fe. e youthful recruits, soon to become the world’s rst nuclear weapons scientists and engineers, knew little about nuclear energy and nothing at all about making an atomic bomb. J. Robert Oppenheimer tasked his Berkeley protégé, Robert Serber, with immediately laying the necessary intellectual groundwork for the arriving scientists.
    [Show full text]
  • Progress in Demonstrating Magneto-Inertial Fusion Science and Scaling Dr
    Progress in demonstrating magneto-inertial fusion science and scaling Dr. Daniel Sinars for the MagLIF team Sandia National Laboratories ARPA-E Annual Meeting August 29-31, 2017 Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. Magnetized Liner Inertial Fusion (MagLIF) relies on three stages to produce fusion relevant conditions Laser Applied Applied Amplified B-field B-field B-field Current Current- generated B-field Compress the heated Apply axial magnetic field Laser-heat the magnetized fuel and magnetized fuel 2 S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010). Magnetized Liner Inertial Fusion (MagLIF) relies on three stages to produce fusion relevant conditions Laser Applied Applied Amplified B-field B-field B-field Current Current- generated B-field Can replace magnetic Compress the heated Apply axial magnetic field Laser-heat the magnetized fuel pressure with laser and magnetized fuel ablation pressure 3 S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010). Our project utilizes existing capabilities* at two institutions to demonstrate magneto-inertial fusion science & scaling Initial Conditions Sandia National Laboratories Laboratory for Laser Energetics • Be liner § 80-TW, 20 MJ § 60-beam, 30-TW, 30 kJ, • ρDT~ 1-4 mg/cc Z pulsed power facility OMEGA laser facility • Bz0~
    [Show full text]
  • Progress in the US Inertial Confinement Fusion Program
    28th IAEA Fusion Energy Conference (FEC 2020) Contribution ID: 1386 Type: Overview Poster [OV POSTER TWIN] Progress in the U.S. Inertial Confinement Fusion Program Monday, 10 May 2021 18:20 (25 minutes) Achieving ignition and high fusion yield in the laboratory is a central goal of the U.S. Inertial Confinement Fusion (ICF) Program. Three major and credible approaches are currently being pursued: laser indirect-drive (LID), laser direct-drive (LDD), and magnetic direct-drive (MDD). While the three approaches use very differ- ent means for driving a spherical or cylindrical implosion that can compress and heat a mass of deuterium- tritium (DT) fuel (by laser-generated radiation drive, direct laser irradiation, or direct magnetic acceleration, respectively), they share many common challenges, including how to efficiently couple the kinetic energy of the implosion to internal energy of the fuel at stagnation, and how to assemble the fuel at the necessary conditions, in pressure, temperature, and areal density to initiate self-heating and ignition. Significant progress has been made in each of these approaches in recent ICF experiments on the NationalIg- nition Facility (NIF) at Lawrence Livermore National Laboratory, the OMEGA laser facility at the Laboratory for Laser Energetics, and the Z pulsed power facility at Sandia National Laboratories. This includes progress in both advancing the absolute fusion output and, as importantly, improving our knowledge and understanding of the implosion behavior and causes of deviations from ideal or theoretical performance. In this overview, we will review some of the major results from each facility, with a particular focus on recent advances in diagnostic measurement techniques and analysis that have improved our understanding of the states of the assembled fuel and confining shell at stagnation.
    [Show full text]