1958 Geneva Conference on the Discontinuation of Nuclear Weapons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Weapons Summary Final 5.30.Indd
Workshop on U.S. Nuclear Weapons Stockpile Management Summary Report November 10, 2011 Summary Report Workshop on U.S. Nuclear Weapons Stockpile Management November 10, 2011 Sponsored by the american association for the advancement of Science, the hudson institute center for political- Military analysis and the Union of concerned Scientists Acknowledgments the center for Science, technology, and Security policy (cStSp) at the american association for the advancement of Science (AAAS) gratefully acknowledges support from the carnegie corporation of New york and the John D. and catherine t. Macarthur Foundation. also, the Union of concerned Scientists (UcS) wishes to thank the colombe Foundation, the David and katherine Moore Family Foundation, inc., the ploughshares Fund, and the prospect hill Foundation for their sustaining support. summaRy RepoRt: WoRkShop oN U.S. N UcleaR Weapons Stockpile Ma NageMeNt | i Introduction on November 10, 2011, the center for Science, technology, and Security policy at the american association for the advancement of Science (AAAS), the hudson institute center for political- Military analysis and the Union of concerned Scientists (UcS) hosted a workshop to discuss the future of the Department of energy’s stockpile management program.1 the meeting was unclassified and off the record.t o allow free discussion, it was carried out under the chatham house Rule in which statements made during the meeting (such as those reported here) can be cited but not attributed to individual speakers. in addition to those from -
Nuclear Weapons Technology 101 for Policy Wonks Bruce T
NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex . -
Memorandum to Participants JASON 1994 Summer Study
Hydronnclear Testing and the Comprehensive Test Ban: Memorandum to Participants JASON 1994 Summer Study Natural Resources Defense Council, Inc. 1350 New York Avenue, NW, Suite 300 Washington, D.C. 20005 Tel (main): (202) 783-7800 Cochran (direct dial): (202) 624-9329 Paine (direct dial): (202) 624-9350 Fax: (202) 783-5917 INTERNET: [email protected] Although no commonly accepted defInition exists, a "hydronuclear test" may be generally described as a nuclear weapons test, or high-explosive driven criticality experiment, characterized by a nuclear energy release that is insuffIcient to heat the core material to the plasma temperatures that would cause it to explode "like a bomb." In such a test, the TNT equivalent energy release from fission would therefore not exceed the amount released by the chemical high explosive used to compress the fIssile material, and could be considerably ,less. Nuclear-weapon states, and possibly other states, also perform high-explosive driven implosion experiments using fusjon material, although" these' are not nonnally characterized as "hydronuclear tests". Hydronuclear tests can serve a useful role in the development of the full spectrum of unboosted fIssion weapons, including'first generation nuclear weapons of the implosion type with yields in the 5 to 30 kiloton range, more sophisticated designs with yields up to about a megaton, and advanced micro-nuclear weapons with yields of 5 to 500 tons. For pure fIssion weapons hydronuclear tests can be used to:' * optimize the timing of initiation of the -
Ocontract No. DE-NA0001942 Section J, Appendix A, Page I SECTION J
oContract No. DE-NA0001942 SECTION J APPENDIX A STATEMENT OF WORK (0015, 0018, 0075, 0104) Section J, Appendix A, Page i oContract No. DE-NA0001942 SECTION J APPENDIX A STATEMENT OF WORK Table of Contents CHAPTER I. Objectives, Scope, and Requirements ......................................................................... 1 1.0 OBJECTIVE ........................................................................................................................ 1 2.0 BACKGROUND ................................................................................................................. 2 2.1 The NNSA Mission ...................................................................................................... 2 2.2 The NNSA Organization .............................................................................................. 2 2.3 Becoming an Enterprise................................................................................................ 2 2.4 Location of Performance .............................................................................................. 3 3.0 SCOPE ................................................................................................................................. 3 3.1 Mission .........................................................................................................................4 3.2 Merging of Operations.................................................................................................. 5 3.3 Scope and Financial Management............................................................................... -
Sidney D. Drell Papers
http://oac.cdlib.org/findaid/ark:/13030/kt0g5030h6 No online items Register of the Sidney D. Drell papers Finding aid prepared by Beth Goder Hoover Institution Library & Archives © 2012, 2021 434 Galvez Mall Stanford University Stanford, CA 94305-6003 [email protected] URL: http://www.hoover.org/library-and-archives Register of the Sidney D. Drell 80074 1 papers Title: Sidney D. Drell papers Date (inclusive): 1945-2017 Collection Number: 80074 Contributing Institution: Hoover Institution Library & Archives Language of Material: English . Physical Description: 62 manuscript boxes, 2 oversize boxes, 2 oversize folders(33.0 Linear Feet) Abstract: Speeches and writings, notes, correspondence, memoranda, reports, studies, and printed matter relating to scientific and technological aspects of United States national security and intelligence issues, including nuclear weapons, nuclear stockpile management, satellite reconnaissance, biological and chemical warfare issues, and terrorism issues. Also includes material relating to the dissident Soviet physicist Andreĭ Sakharov, and to efforts on his behalf by Western scientists. Includes writings and letters by Sakharov. Hoover Institution Archives Access The collection is open for research; materials must be requested at least two business days in advance of intended use. Publication Rights For copyright status, please contact the Hoover Institution Archives. Acquisition Information Acquired by the Hoover Institution Archives in 1980, with increments received in 1981 and 2016. Accruals Materials may have been added to the collection since this finding aid was prepared. To determine if this has occurred, find the collection in Stanford University's online catalog at https://searchworks.stanford.edu . Materials have been added to the collection if the number of boxes listed in the online catalog is larger than the number of boxes listed in this finding aid. -
Challenges Facing Stockpile Stewardship in the Second Nuclear Age
Challenges Facing Stockpile Stewardship in the Second Nuclear Age WELCOME to this issue of National Security Science. is issue is in celebration of the rst Los Alamos Primer lectures, which took place 71 years ago in the spring of 1943. ese lectures were held in conjunction with the start-up of “Project Y,” which was part of the Manhattan Project. Project Y would eventually become Los Alamos National Laboratory. e U.S. entry into the Atomic Age had been slow and cautious. But when the United States entered World War II and faced the carnage of the war, ghting and genocide had already claimed millions of lives. Obtaining the bomb before Nazi Germany or Imperial Japan was imperative. e brightest students (their average age was 24) were recruited from the nation’s best colleges and universities. ey were joined by other recruits: some of the world’s preeminent scientists—for example, Enrico Fermi, Hans Bethe, Edward Teller, and Stanislaw Ulam—many of them refugees from Nazi Germany. e recruits were told very little other than that their work might bring an end to the war. ey were given one-way train tickets to the tiny town of Lamy, New Mexico, just south of Santa Fe. ere they were met by government agents and spirited away to an undisclosed location in the mountains northwest of Santa Fe. e youthful recruits, soon to become the world’s rst nuclear weapons scientists and engineers, knew little about nuclear energy and nothing at all about making an atomic bomb. J. Robert Oppenheimer tasked his Berkeley protégé, Robert Serber, with immediately laying the necessary intellectual groundwork for the arriving scientists. -
Dangerous Thermonuclear Quest: the Potential of Explosive Fusion Research for the Development of Pure Fusion Weapons
Dangerous Thermonuclear Quest: The Potential of Explosive Fusion Research for the Development of Pure Fusion Weapons Arjun Makhijani, Ph.D. Hisham Zerriffi July 1998 Minor editing revisions made in 2003. Table of Contents Preface i Summary and Recommendations v Summary of Findings vi Recommendations vii Chapter 1: Varieties of Nuclear Weapons 1 A. Historical Background 1 B. Converting Matter into Energy 4 C. Fission energy 5 D. Fusion energy 8 E. Fission-fusion weapons 16 Chapter 2: Inertial Confinement Fusion Basics 19 A. Deposition of driver energy 24 B. Driver requirements 25 C. Fuel pellet compression 27 D. Thermonuclear ignition 29 Chapter 3: Various ECF Schemes 31 A. Laser Drivers 32 B. Ion Beam Drivers 34 1. Heavy Ion Beams 35 a. Induction Accelerators 36 b. Radio-Frequency Accelerators 36 2. Light Ion Beams 37 C. Z-pinch 39 D. Chemical Explosives 40 E. Advanced materials manufacturing 42 1. Nanotechnology 42 2. Metallic Hydrogen 45 Chapter 4: The Prospects for Pure Fusion Weapons 47 A. Requirements for pure fusion weapons 47 B. Overall assessment of non-fission-triggered nuclear weapons 48 1. Ignition 48 2. Drivers 53 C. Overall technical prognosis for non-fission triggered nuclear weapons 54 D. Fusion power and fusion weapons - comparative requirements 56 Chapter 5: Nuclear Disarmament and Non-Proliferation Issues Related to Explosive Confinement Fusion 59 A. The Science Based Stockpile Stewardship Program 62 1. Reliability 62 a. Reliability definition 63 b. Future reliability problems 64 c. Relevance of NIF to reliability of the current stockpile 65 2. The US laser fusion program as a weapons development program 65 3. -
FY 2021 Congressional Budget Request
DOE/CF-0161 Volume 1 Department of Energy FY 2021 Congressional Budget Request National Nuclear Security Administration Federal Salaries and Expenses Weapons Activities Defense Nuclear Nonproliferation Naval Reactors February 2020 Office of Chief Financial Officer Volume 1 DOE/CF-0161 Volume 1 Department of Energy FY 2021 Congressional Budget Request National Nuclear Security Administration Federal Salaries and Expenses Weapons Activities Defense Nuclear Nonproliferation Naval Reactors February 2020 Office of Chief Financial Officer Volume 1 Printed with soy ink on recycled paper FY 2021 Congressional Budget Request Volume 1 Table of Contents Page Appropriation Account Summary .............................................................................................................................................. 1 Overview .................................................................................................................................................................................... 3 Federal Salaries and Expenses .................................................................................................................................................. 69 Weapons Activities .................................................................................................................................................................... 85 Defense Nuclear Nonproliferation ........................................................................................................................................... -
A Novel Three-Axis Cylindrical Hohlraum Designed
www.nature.com/scientificreports OPEN A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition Received: 19 May 2016 Longyu Kuang1,2,3, Hang Li1,2,3, Longfei Jing1, Zhiwei Lin1, Lu Zhang1, Liling Li1, Accepted: 12 September 2016 Yongkun Ding1,2,3,4, Shaoen Jiang1,2,3,4, Jie Liu3,4,5 & Jian Zheng2,4 Published: 05 October 2016 A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum. In indirect-drive Inertial Confinement Fusion (ICF), laser beams are injected into a high-Z hohlraum through laser entrance holes (LEHs) and are converted into X-ray radiation, then the radiation irradiates a low-Z capsule in the center of the hohlraum to bring the central fuel in the capsule to ignition conditions1–6. -
Stockpile Stewardship at 20 Years
Stockpile S&TR July/August 2015 Stockpile Stewardship In the two decades since it was established, at 20 Years the nation’s Stockpile Stewardship and Management Program has served as a highly effective tool for maintaining confidence in the U.S. nuclear deterrent. 6 Lawrence Livermore National Laboratory S&TR July/August 2015 Stockpile StewardshipStockpile OLLOWING the collapse of the Soviet weapons laboratories (Livermore, Los FUnion and the end of the Cold War, the Alamos, and Sandia national laboratories), United States took a series of bold steps to DOE officials, and congressional leaders. strengthen nuclear nonproliferation. These The new approach relied on advanced steps included halting underground nuclear scientific understanding through a testing, ceasing the development of new combination of theoretical advances, nuclear weapons, reducing the size of the nonnuclear (including subcritical) existing nuclear stockpile, and beginning to experiments, supercomputer simulations, close nonessential elements of the nuclear and enhanced stockpile surveillance—not weapons production complex. In September on additional nuclear testing—to predict, 1996, President Clinton formally announced identify, and correct stockpile problems. his decision to seek a Comprehensive A key architect of the fledgling Nuclear-Test-Ban Treaty (CTBT) and program, DOE’s Assistant Secretary for directed the Department of Energy (DOE) Defense Programs Vic Reis, addressed to take the required actions for sustaining Livermore employees in October 1995 confidence in the stockpile without nuclear to discuss the ambitious effort. Reis told testing. Thus, the Stockpile Stewardship employees the “awesome responsibility” and Management Program was formally for decisions regarding the safety and established to maintain the safety, security, reliability of the nation’s nuclear weapons and reliability of the U.S. -
Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 Journal
Presorted Standard U.S. Postage Paid Albuquerque, NM nuclear Permit No. 532 Nuclear Weapons Journal PO Box 1663 Mail Stop A142 Los Alamos, NM 87545 WEAPONS Issue 2 • 2009 journal Issue 2 2009 LALP-10-001 Nuclear Weapons Journal highlights ongoing work in the nuclear weapons programs at Los Alamos National Laboratory. NWJ is an unclassified publication funded by the Weapons Programs Directorate. Managing Editor-Science Writer Editorial Advisor Send inquiries, comments, subscription requests, Margaret Burgess Jonathan Ventura or address changes to [email protected] or to the Designer-Illustrator Technical Advisor Nuclear Weapons Journal Jean Butterworth Sieg Shalles Los Alamos National Laboratory Mail Stop A142 Science Writers Printing Coordinator Los Alamos, NM 87545 Brian Fishbine Lupe Archuleta Octavio Ramos Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. This publication was prepared as an account of work sponsored by an agency of the US Government. Neither Los Alamos National Security, LLC, the US Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos National Security, LLC, the US Government, or any agency thereof. -
Progress of Indirect Drive Inertial Confinement Fusion in the Us
Kline DOI:10.1088/1741-4326/ab1ecf OV/2-5 Progress of Indirect Drive Inertial Confinement Fusion in the USA J. L. Kline1, S. H. Batha1, L. R. Benedetti2, D. Bennett2, S. Bhandarkar2, L. F. Berzak-Hopkines2, J. Biener2, M. M. Biener2, R. Bionta2, E. Bond2, D. Bradley2, P. A. Bradley1, T. Braun2, D. A. Callahan2, J. Caggiano2, T. Cardenas2, C. Cerjjan2, B. Cagadas2, D. Clark2, C. Castro2, W. S. Daughton1, E. L. Dewald2, T. Döppner2, L. Divol2, E. S. Dodd1, R. Dylla-Spears2, M. Eckart2, D. Edgell3, M. Farrell4, J. Field2, F. Fierro1, D. N. Fittinghoff2, M. Gatu-Johnson5, S. Johnson2, G. Grim2, N. Guler1, S. Haan2, B. M. Haines1, C. E. Hamilton1, A. V. Hamza2, E. P. Hartouni2, R. Hatarik2, K. Hernderson1, H. W. Herrmann1, D. Hinkel2, D. D. Ho2, M. Hohenburger2, D. Hoover4, H. Huang4, M. L. Hoppe4, O. A. Hurricane2, N. Izumi2, O. S. Jones2, S. Khan2, B. J. Kozioziemski2, C. Kong2, J. Kroll2, G. A. Kyrala2, R. J. Leeper2, S. LePape2, E. Loomis1, T. Ma2, A. J. Mackinnon2, A. G. MacPhee2, S. MacLaren2, L. Masse2, J. McNaney2, N. B. Meezan2, J. F. Merrill1, E. C. Merritt1, J. L. Milovich2, D. S. Montgomery1, J. Moody2, A. Nikroo2, J. Oertel1, R. E. Olson1, A. Pak2, S. Palaniyappan1, P. Patel2, B. M. Patterson1, T. S. Perry1, R. R. Peterson1, E. Piceno2, J. E. Ralph2, R. B. Randolph1, N. Rice4, H. F. Robey2, J. S. Ross2, J. R. Rygg3, M. R. Sacks1, J. Sauppe1, J. Salmonson2, D. Sayre2, J. D. Sater2, M. Schneider2, M. Schoff4, D. W. Schmidt1, S.