Spectral Methods for Natural Language Processing Jang Sun

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Methods for Natural Language Processing Jang Sun Spectral Methods for Natural Language Processing Jang Sun Lee (Karl Stratos) Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Jang Sun Lee (Karl Stratos) All Rights Reserved ABSTRACT Spectral Methods for Natural Language Processing Jang Sun Lee (Karl Stratos) Many state-of-the-art results in natural language processing (NLP) are achieved with sta- tistical models involving latent variables. Unfortunately, computational problems associ- ated with such models (for instance, finding the optimal parameter values) are typically intractable, forcing practitioners to rely on heuristic methods without strong guarantees. While heuristics are often sufficient for empirical purposes, their de-emphasis on theoretical aspects has certain negative ramifications. First, it can impede the development of rigorous theoretical understanding which can generate new ideas and algorithms. Second, it can lead to black art solutions that are unreliable and difficult to reproduce. In this thesis, we argue that spectral methods|that is, methods that use singular value decomposition or other similar matrix or tensor factorization|can effectively remedy these negative ramifications. To this end, we develop spectral methods for two unsupervised language processing tasks. The first task is learning lexical representations from unanno- tated text (e.g., hierarchical clustering of a vocabulary). The second task is estimating parameters of latent-variable models used in NLP applications (e.g., for unsupervised part- of-speech tagging). We show that our spectral algorithms have the following advantages over previous methods: 1. The algorithms provide a new theoretical framework that is amenable to rigorous analysis. In particular, they are shown to be statistically consistent. 2. The algorithms are simple to implement, efficient, and scalable to large amounts of data. They also yield results that are competitive with the state-of-the-art. Table of Contents List of Figures vii List of Tables x 1 Introduction 1 1.1 Motivation . .1 1.2 Learning Lexical Representations . .3 1.2.1 Hierarchical Word Clusters . .4 1.2.2 Word Embeddings . .4 1.3 Estimating Parameters of Latent-Variable Models . .5 1.3.1 Unsupervised POS Tagging . .5 1.3.2 Phoneme Recognition . .6 1.4 Thesis Overview . .7 1.5 Notation . .7 2 Related Work 8 2.1 Latent-Variable Models in NLP . .8 2.2 Representation Learning in NLP . .9 2.3 Spectral Techniques . 10 I The Spectral Framework 12 3 A Review of Linear Algebra 13 3.1 Basic Concepts . 13 i 3.1.1 Vector Spaces and Euclidean Space . 13 3.1.2 Subspaces and Dimensions . 14 3.1.3 Matrices . 15 3.1.4 Orthogonal Matrices . 17 3.1.5 Orthogonal Projection onto a Subspace . 17 3.1.6 Gram-Schmidt Process and QR Decomposition . 18 3.2 Eigendecomposition . 19 3.2.1 Square Matrices . 20 3.2.2 Symmetric Matrices . 22 3.2.3 Variational Characterization . 23 3.2.4 Semidefinite Matrices . 25 3.2.5 Numerical Computation . 27 3.3 Singular Value Decomposition (SVD) . 32 3.3.1 Derivation from Eigendecomposition . 32 3.3.2 Variational Characterization . 34 3.3.3 Numerical Computation . 35 3.4 Perturbation Theory . 36 3.4.1 Perturbation Bounds on Singular Values . 36 3.4.2 Canonical Angles Between Subspaces . 36 3.4.3 Perturbation Bounds on Singular Vectors . 38 4 Examples of Spectral Techniques 43 4.1 The Moore{Penrose Pseudoinverse . 43 4.2 Low-Rank Matrix Approximation . 44 4.3 Finding the Best-Fit Subspace . 45 4.4 Principal Component Analysis (PCA) . 46 4.4.1 Best-Fit Subspace Interpretation . 46 4.5 Canonical Correlation Analysis (CCA) . 47 4.5.1 Least Squares Interpretation . 49 4.5.2 New Coordinate Interpretation . 49 4.5.3 Dimensionality Reduction with CCA . 50 ii 4.6 Spectral Clustering . 55 4.7 Subspace Identification . 57 4.8 Alternating Minimization Using SVD . 58 4.9 Non-Negative Matrix Factorization . 61 4.10 Tensor Decomposition . 62 II Inducing Lexical Representations 65 5 Word Clusters Under Class-Based Language Models 66 5.1 Introduction . 66 5.2 Background . 68 5.2.1 The Brown Clustering Algorithm . 68 5.2.2 CCA and Agglomerative Clustering . 69 5.3 Brown Model Definition . 70 5.4 Clustering Under the Brown Model . 71 5.4.1 An Overview of the Approach . 71 5.4.2 Spectral Estimation of Observation Parameters . 72 5.4.3 Estimation from Samples . 73 5.4.4 Agglomerative Clustering . 75 5.5 Experiments . 76 5.5.1 Experimental Settings . 77 5.5.2 Comparison to the Brown Algorithm: Quality . 77 5.5.3 Comparison to the Brown Algorithm: Speed . 78 5.5.4 Effect of the Choice of κ and Context . 81 5.6 Conclusion . 81 6 Word Embeddings from Decompositions of Count Matrices 84 6.1 Introduction . 84 6.2 Background in CCA . 85 6.2.1 CCA Objective . 85 6.2.2 Exact Solution via SVD . 86 iii 6.2.3 Using CCA for Word Representations . 86 6.3 Using CCA for Parameter Estimation . 88 6.3.1 Clustering under a Brown Model . 88 6.3.2 Spectral Estimation . 89 6.3.3 Choice of Data Transformation . 90 6.4 A Template for Spectral Methods . 91 6.5 Related Work . 93 6.6 Experiments . 93 6.6.1 Word Similarity and Analogy . 93 6.6.2 As Features in a Supervised Task . 96 6.7 Conclusion . 97 III Estimating Latent-Variable Models 98 7 Spectral Learning of Anchor Hidden Markov Models 99 7.1 Introduction . 99 7.2 The Anchor Hidden Markov Model . 100 7.3 Parameter Estimation for A-HMMs . 101 7.3.1 NMF . 101 7.3.2 Random Variables . 102 7.3.3 Derivation of a Learning Algorithm . 103 7.3.4 Construction of the Convex Hull Ω . 106 7.4 Experiments . 109 7.4.1 Background on Unsupervised POS Tagging . 109 7.4.2 Experimental Setting . 110 7.4.3 Practical Issues with the Anchor Algorithm . 112 7.4.4 Tagging Accuracy . 113 7.4.5 Qualitative Analysis . 113 7.5 Related Work . 114 7.5.1 Latent-Variable Models . 114 iv 7.5.2 Unsupervised POS Tagging . 115 7.6 Conclusion . 116 8 Spectral Learning of Refinement Hidden Markov Models 119 8.1 Introduction . 119 8.2 Related Work . 121 8.3 The R-HMM Model . 121 8.3.1 Definition of an R-HMM . 121 8.4 The Forward-Backward Algorithm . 123 8.5 Spectral Estimation of R-HMMs . 125 8.5.1 Random Variables . 125 8.5.2 Estimation of the Operators . 127 8.6 The Spectral Estimation Algorithm . 129 8.7 Experiments . 130 8.8 Conclusion . ..
Recommended publications
  • Spectral Gap and Asymptotics for a Family of Cocycles of Perron-Frobenius Operators
    Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mathematics and Statistics c Joseph Anthony Horan, 2020 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. We acknowledge with respect the Lekwungen peoples on whose traditional territory the university stands, and the Songhees, Esquimalt, and WSANE´ C´ peoples whose ¯ historical relationships with the land continue to this day. Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 Supervisory Committee Dr. Christopher Bose, Co-Supervisor (Department of Mathematics and Statistics) Dr. Anthony Quas, Co-Supervisor (Department of Mathematics and Statistics) Dr. Sue Whitesides, Outside Member (Department of Computer Science) ii ABSTRACT At its core, a dynamical system is a set of things and rules for how they change. In the study of dynamical systems, we often ask questions about long-term or average phe- nomena: whether or not there is an equilibrium for the system, and if so, how quickly the system approaches that equilibrium. These questions are more challenging in the non-autonomous (or random) setting, where the rules change over time. The main goal of this dissertation is to develop new tools with which to study random dynamical systems, and demonstrate their application in a non-trivial context.
    [Show full text]
  • Nonlinear Spectral Calculus and Super-Expanders
    NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS MANOR MENDEL AND ASSAF NAOR Abstract. Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Ces`aroaver- ages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space. Contents 1. Introduction 2 1.1. Coarse non-embeddability 3 1.2. Absolute spectral gaps 5 1.3. A combinatorial approach to the existence of super-expanders 5 1.3.1. The iterative strategy 6 1.3.2. The need for a calculus for nonlinear spectral gaps 7 1.3.3. Metric Markov cotype and spectral calculus 8 1.3.4. The base graph 10 1.3.5. Sub-multiplicativity theorems for graph products 11 2. Preliminary results on nonlinear spectral gaps 12 2.1. The trivial bound for general graphs 13 2.2. γ versus γ+ 14 2.3. Edge completion 18 3. Metric Markov cotype implies nonlinear spectral calculus 19 4. An iterative construction of super-expanders 20 5. The heat semigroup on the tail space 26 5.1. Warmup: the tail space of scalar valued functions 28 5.2. Proof of Theorem 5.1 31 5.3. Proof of Theorem 5.2 34 5.4. Inverting the Laplacian on the vector-valued tail space 37 6. Nonlinear spectral gaps in uniformly convex normed spaces 39 6.1.
    [Show full text]
  • Spectral Gap and Definability
    SPECTRAL GAP AND DEFINABILITY ISAAC GOLDBRING ABSTRACT. We relate the notions of spectral gap for unitary representations and subfactors with definability of certain important sets in the corresponding structures. We give several applications of this relationship. CONTENTS 1. Introduction 2 1.1. A crash course in continuous logic 3 2. Definability in continuous logic 5 2.1. Generalities on formulae 5 2.2. Definability relative to a theory 7 2.3. Definability in a structure 9 3. Spectral gap for unitary group representations 11 3.1. Generalities on unitary group representations 11 3.2. Introducing spectral gap 12 3.3. Spectral gap and definability 13 3.4. Spectral gap and ergodic theory 15 4. Basic von Neumann algebra theory 17 4.1. Preliminaries 17 4.2. Tracial von Neumann algebras as metric structures 19 4.3. Property Gamma and the McDuff property 20 5. Spectral gap subalgebras 21 5.1. Introducing spectral gap for subalgebras 21 arXiv:1805.02752v1 [math.LO] 7 May 2018 5.2. Spectral gap and definability 22 5.3. Relative bicommutants and e.c. II1 factors 23 5.4. Open questions 24 6. Continuum many theories of II1 factors 25 6.1. The history and the main theorem 25 6.2. The base case 26 6.3. A digression on good unitaries and generalized McDuff factors 27 6.4. The inductive step 28 References 29 Goldbring’s work was partially supported by NSF CAREER grant DMS-1349399. 1 2 ISAAC GOLDBRING 1. INTRODUCTION The notion of definable set is one of (if not the) most important concepts in clas- sical model theory.
    [Show full text]
  • A Direct Approach to Robustness Optimization
    A Direct Approach to Robustness Optimization Thesis by Seungil You In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2016 (Defended August 12, 2015) ii c 2016 Seungil You All Rights Reserved iii To My Family iv Acknowledgments First and foremost, my gratitude goes to my advisor, John. He encouraged me to pursue my own ideas, and always gave me great feedback with a sense of humor. His unique research style made my academic journey at Caltech very special, and changed my way of looking at problems. I was simply lucky to have him as my advisor. I am also thankful to my thesis committee members: Richard Murray, Babak Hassibi, and Venkat Chandrasekaran. Richard has guided me at every milestone of my PhD studies, despite of his impossible schedule. Babak gladly agreed to be my committee member. I was in Venkat’s first class at Caltech on advanced topics in convex optimization. Of course, I was fascinated by the results he taught, and deeply influenced by his genuine point of view on solving mathematical problems. I learned convex optimization from Joel Tropp, and was immediately thrilled by the subject. His endless effort to establish a minimal, elegant theoretical framework for many challenging math problems had a profound impact on me. Lijun Chen taught me how to write a scientific paper, as well as how to formulate the problem in a concrete manner. Under his guidance, I was able to become an independent researcher. I met Ather Gattami in Florence, Italy, during CDC.
    [Show full text]
  • Spectral Perturbation Bounds for Selfadjoint Operators I∗
    Spectral perturbation bounds for selfadjoint operators I∗ KreˇsimirVeseli´c† Abstract We give general spectral and eigenvalue perturbation bounds for a selfadjoint op- erator perturbed in the sense of the pseudo-Friedrichs extension. We also give sev- eral generalisations of the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using analyticity and monotonicity properties (rather than variational principles) and they are general enough to include eigenvalues in gaps of the essential spectrum. 1 Introduction The main purpose of this paper is to derive spectral and eigenvalue bounds for selfadjoint operators. If a selfadjoint operator H in a Hilbert space H is perturbed into T = H + A (1) with, say, a bounded A then the well-known spectral spectral inclusion holds σ(T ) ⊆ {λ : dist(λ, σ(H)) ≤ kAk} . (2) Here σ denotes the spectrum of a linear operator. (Whenever not otherwise stated we shall follow the notation and the terminology of [3].) If H, A, T are finite Hermitian matrices then (1) implies |µk − λk| ≤ kAk, (3) where µk, λk are the non-increasingly ordered eigenvalues of T,H, respectively. (Here and henceforth we count the eigenvalues together with their multiplicities.) Whereas (2) may be called an upper semicontinuity bound the estimate (3) contains an existence statement: each of the intervals [λk − kAk, λk + kAk] contains ’its own’ µk. Colloquially, bounds like (2) may be called ’one-sided’ and those like (3) ’two-sided’. As it is well-known (3) can be refined to another two-sided bound min σ(A) ≤ µk − λk ≤ max σ(A). (4) In [9] the following ’relative’ two-sided bound was derived |µk − λk| ≤ b|λk|, (5) ∗This work was partly done during the author’s stay at the University of Split, Faculty of Electrotechnical Engineering, Mechanical Engineering and Naval Archtecture while supported by the National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Spectral Gap Rigidity and Unique Prime Decomposition Permalink https://escholarship.org/uc/item/1j63188h Author Winchester, Adam Jeremiah Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Spectral Gap Rigidity and Unique Prime Decomposition A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Adam Jeremiah Winchester 2012 c Copyright by Adam Jeremiah Winchester 2012 Abstract of the Dissertation Spectral Gap Rigidity and Unique Prime Decomposition by Adam Jeremiah Winchester Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Sorin Popa, Chair We use malleable deformations combined with spectral gap rigidity theory, in the framework of Popas deformation/rigidity theory to prove unique tensor product decomposition results for II1 factors arising as tensor product of wreath product factors and free group factors. We also obtain a similar result regarding measure equivalence decomposition of direct products of such groups. ii The dissertation of Adam Jeremiah Winchester is approved. Dimitri Shlyakhtenko Yehuda Shalom Jens Palsberg Sorin Popa, Committee Chair University of California, Los Angeles 2012 iii To All My Friends iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Preliminaries ::::::::::::::::::::::::::::::::::::: 8 2.1 Intro to von Neumann Algebras . 8 2.2 von Neumann Subalgebras . 13 2.3 GNS and Bimodules . 14 2.4 The Basic Construction . 17 2.5 S-Malleable Deformations . 18 2.6 Spectral Gap Rigidity . 20 2.7 Intertwining By Bimodules . 20 3 Relative Amenability :::::::::::::::::::::::::::::::: 22 3.1 Definition .
    [Show full text]
  • Eigenvalues in Spectral Gaps of Differential Operators
    J. Spectr. Theory 2 (2012), 293–320 Journal of Spectral Theory DOI 10.4171/JST/30 © European Mathematical Society Eigenvalues in spectral gaps of differential operators Marco Marletta1 and Rob Scheichl Abstract. Spectral problems with band-gap spectra arise in numerous applications, including the study of crystalline structures and the determination of transmitted frequencies in pho- tonic waveguides. Numerical discretization of these problems can yield spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint operators which avoids spectral pollution. The method perturbs the problem into a dissipative problem in which the eigenvalues to be calculated are lifted out of the convex hull of the essential spectrum, away from the spectral pollution. The method is analysed here in the context of one-dimensional Schrödinger equations on the half line, but is applicable in a much wider variety of contexts, including PDEs, block operator matrices, multiplication operators, and others. Mathematics Subject Classification (2010). 34L, 65L15. Keywords. Eigenvalue, spectral pollution, self-adjoint, dissipative, Schrödinger, spectral gap, spectral band, essential spectrum, discretization, variational method. 1. Introduction In the numerical calculation of the spectrum of a self-adjoint operator, one of the most difficult cases to treat arises when the spectrum has band-gap structure and one wishes to calculate eigenvalues in the spectral gaps above the infimum of the essential spectrum. The reason for this difficulty is that variational methods will generally result in spectral pollution (see, e.g., Rappaz, Sanchez Hubert, Sanchez Palencia and Vassiliev [22]): following discretization, the spectral gaps fill up with eigenvalues of the discrete problem which are so closely spaced that it is impossible to distinguish the spectral bands from the spectral gaps.
    [Show full text]
  • Notes by Fred Naud
    HECKE OPERATORS AND SPECTRAL GAPS ON COMPACT LIE GROUPS. FRED´ ERIC´ NAUD, EXTENDED VERSION OF TALK AT PEYRESQ, MAY 22TH 2016 Abstract. In these notes we review some of the recent progress on questions related to spectral gaps of Hecke operators on compact Lie groups. In particular, we discuss the historical Ruziewicz problem that motivated the discovery of the first examples, followed by the work of Gamburd-Jakobson-Sarnak [5], Bourgain-Gamburd [3],[2] and also the recent paper of Benoist-Saxc´e[1]. 1. Introduction Let G be a compact connected Lie Group whose normalized Haar measure is denoted by m. Let µ be a probability measure on G. On the Hilbert space L2(G; dm), we define a convolution operator by Z Tµ(f)(x) := f(xg)dµ(g): G 2 2 We can check easily that Tµ : L ! L is bounded linear with norm 1. The constant function 1 is an obvious eigenfunction related to the eigenvalue 1. If in addition µ is symmetric i.e. −1 µ(A ) = µ(A) for all Borel set A, then Tµ is self-adjoint. The main purpose of these notes is the following question. Set Z 2 2 L0(G) := f 2 L (G): fdm = 0 : G 2 Clearly L0 is a closed Tµ-invariant space. If we have (ρsp is the spectral radius) ρsp(Tµj 2 ) < 1; L0 then we say that Tµ has a spectral gap. There is an easy case: if µ is symmetric and has a continuous density with respect to Haar, then by Ascoli-Arzuela Tµ is a compact operator and one can check that 1 is a simple eigenvalue while −1 is not in the spectrum.
    [Show full text]
  • Spectral Algorithms
    Spectral Algorithms Ravindran Kannan Santosh Vempala August, 2009 ii Summary. Spectral methods refer to the use of eigenvalues, eigenvectors, sin- gular values and singular vectors. They are widely used in Engineering, Ap- plied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to \discrete" as well \continuous" problems. This book describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. In the first part of the book, we present applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A fea- ture of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on \sampling on the fly” from massive matrices. Good estimates of singular values and low rank ap- proximations of the whole matrix can be provably derived from a sample. Our main emphasis in the second part of the book is to present these sampling meth- ods with rigorous error bounds. We also present recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems. Contents I Applications 1 1 The Best-Fit Subspace 3 1.1 Singular Value Decomposition . .4 1.2 Algorithms for computing the SVD . .8 1.3 The k-variance problem . .8 1.4 Discussion . 11 2 Mixture Models 13 2.1 Probabilistic separation . 14 2.2 Geometric separation . 14 2.3 Spectral Projection .
    [Show full text]
  • Norms on Complex Matrices Induced by Complete
    NORMS ON COMPLEX MATRICES INDUCED BY COMPLETE HOMOGENEOUS SYMMETRIC POLYNOMIALS KONRAD AGUILAR, ÁNGEL CHÁVEZ, STEPHAN RAMON GARCIA, AND JURIJ VOLCIˇ Cˇ Abstract. We introduce a remarkable new family of norms on the space of n × n complex matrices. These norms arise from the combinatorial properties of sym- metric functions, and their construction and validation involve probability theory, partition combinatorics, and trace polynomials in noncommuting variables. Our norms enjoy many desirable analytic and algebraic properties, such as an ele- gant determinantal interpretation and the ability to distinguish certain graphs that other matrix norms cannot. Furthermore, they give rise to new dimension- independent tracial inequalities. Their potential merits further investigation. 1. Introduction In this note we introduce a family of norms on complex matrices. These are ini- tially defined in terms of certain symmetric functions of eigenvalues of complex Hermitian matrices. The fact that we deal with eigenvalues, as opposed to their absolute values, is notable. First, it prevents standard machinery, such as the the- ory of symmetric gauge functions, from applying. Second, the techniques used to establish that we indeed have norms are more complicated than one might ex- pect. For example, combinatorics, probability theory, and Lewis’ framework for group invariance in convex matrix analysis each play key roles. These norms on the Hermitian matrices are of independent interest. They can be computed recursively or directly read from the characteristic polyno- mial. Moreover, our norms distinguish certain pairs of graphs which the standard norms (operator, Frobenius, Schatten-von Neumann, Ky Fan) cannot distinguish. Our norms extend in a natural and nontrivial manner to all complex matrices.
    [Show full text]
  • On Hyperboundedness and Spectrum of Markov Operators
    On hyperboundedness and spectrum of Markov operators Laurent Miclo Institut de Math´ematiques de Toulouse Plan of the talk 1 Høegh-Krohn and Simon’s conjecture 2 Higher order Cheeger inequalities in the finite setting 3 An approximation procedure 4 General higher order Cheeger’s inequalities 5 Quantitative links between hyperboundedness and spectrum Reversible Markov operators On a probability space S, S,µ , a self-adjoint operator 2 2 p q M : L µ L µ is said to be Markovian if µ-almost surely, p qÑ p q 2 f L µ , f 0 M f 0 @ P p q ě ñ r sě M 1 1 r s “ So M admits a spectral decomposition: there exists a projection-valued measure El 1 1 such that p qlPr´ , s 1 M l dEl “ 1 ż´ and M is said to be ergodic if 2 f L µ , Mf f f Vect 1 @ P p q “ ñ P p q 2 namely if E1 E1 L µ Vect 1 . p ´ ´qr p qs “ p q Hyperboundedness Stronger requirement: M has a spectral gap if there exists λ 0 2 ą such that E1 E1 λ L µ Vect 1 . Spectral gap: the p ´ ´ qr p qs “ p q supremum of such λ. The Markov operator M is hyperbounded if there exists p 2 such ą that M L2 Lp } } pµqÑ pµq ă `8 Theorem A self-adjoint ergodic and hyperbounded Markovian operator admits a spectral gap. This result was conjectured by Høegh-Krohn and Simon [1972], in the context of Markovian semi-groups.
    [Show full text]
  • Spectral Deformations of One-Dimensional Schrö
    SPECTRAL DEFORMATIONS OF ONE-DIMENSIONAL SCHRODINGER OPERATORS E GESZTESY, B. SIMON* AND G. TESCHL Abstract. We provide a complete spectral characterization of a new method of constructing isospectral (in fact, unitary) deformations of general Schrrdinger operators H = -d2/d.x 2 + V in L2(/l~). Our technique is connected to Dirichlet data, that is, the spectrum of the operator H D on L2((-~,x0)) @ L2((x0, oo)) with a Difichlet boundary condition at x 0. The transformation moves a single eigenvalue of H D and perhaps flips which side of x 0 the eigenvalue lives. On the remainder of the spectrum, the transformation is realized by a unitary operator. For cases such as V(x) ---, ~ as Ixl --" ~, where V is uniquely determined by the spectrum of H and the Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only by the asymptotics as E ~ oo. w Introduction Spectral deformations of Schrrdinger operators in L2(/R), isospectral and cer- tain classes of non-isospectral ones, have attracted a lot of interest over the past three decades due to their prominent role in connection with a variety of top- ics, including the Korteweg-de Vries (KdV) hierarchy, inverse spectral problems, supersymmetric quantum mechanical models, level comparison theorems, etc. In fact, the construction of N-soliton solutions of the KdV hierarchy (and more gener- ally, the construction of solitons relative to reflectionless backgrounds) is a typical example of a non-isospectral deformation of H = -d2/dx 2 in L2(R) since the resulting deformation [1 = -d2/dx 2 + re" acquires an additional point spectrum {A1,..., Au} C (-e~, O) such that o'(H) = or(H) tO {A1,..., AN} (cr(.) abbreviating the spectrum).
    [Show full text]