Introduction to the Transfer Operator Method

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the Transfer Operator Method Omri Sarig Introduction to the transfer operator method Winter School on Dynamics Hausdorff Research Institute for Mathematics, Bonn, January 2020 Contents 1 Lecture 1: The transfer operator (60 min) ......................... 3 1.1 Motivation . .3 1.2 Definition, basic properties, and examples . .3 1.3 The transfer operator method . .5 2 Lecture 2: Spectral Gap (60 min) ................................ 7 2.1 Quasi–compactness and spectral gap . .7 2.2 Sufficient conditions for quasi-compactness . .9 2.3 Application to continued fractions. .9 3 Lecture 3: Analytic perturbation theory (60 min) . 13 3.1 Calculus in Banach spaces . 13 3.2 Resolvents and eigenprojections . 14 3.3 Analytic perturbations of operators with spectral gap . 15 4 Lecture 4: Application to the Central Limit Theorem (60 min) . 17 4.1 Spectral gap and the central limit theorem . 17 4.2 Background from probability theory . 17 4.3 The proof of the central limit theorem (Nagaev’s method) . 18 5 Lecture 5 (time permitting): Absence of spectral gap (60 min) . 23 5.1 Absence of spectral gap . 23 5.2 Inducing . 23 5.3 Operator renewal theory . 24 A Supplementary material ........................................ 27 A.1 Conditional expectations and Jensen’s inequality . 27 A.2 Mixing and exactness for the Gauss map . 30 A.3 Hennion’s theorem on quasi-compactness . 32 A.4 The analyticity theorem . 40 A.5 Eigenprojections, “separation of spectrum”, and Kato’s Lemma . 41 A.6 The Berry–Esseen “Smoothing Inequality” . 43 1 Lecture 1 The transfer operator 1.1 Motivation A thought experiment Drop a little bit of ink into a glass of water, and then stir it with a tea spoon. 1. Can you predict where individual ink particles will be after one minute? NO: the motion of ink particles is chaotic. 2. Can you predict the density profile of ink after one minute? YES: it will be nearly uniform. Gibbs’s insight: For chaotic systems, it may be easier to predict the behavior of large collections of initial conditions, than to predict the behavior of individual ini- tial conditions. The transfer operator: The action of a dynamical system on mass densities of initial conditions. 1.2 Definition, basic properties, and examples Setup. Let T : X ! X be a non–singular measurable map on a s–finite measure space (X;B; m). Non-singularity means that m(T −1E) = 0 , m(E) = 0 (E 2 B). All the maps we consider in these notes are non–invertible. The action of T on mass densities. Suppose we distribute mass on X according to the mass density f dm, f 2 L1(m), f ≥ 0, and then apply T to every point in the space. What will be the new mass distribution? 3 4 1 Lecture 1: The transfer operator (60 min) Z (The mass of points which land at E) = 1E (Tx) f (x)dm(x); (1E =indicator of E) Z = (1E ◦ T)dm f (x); where m f := f dm Z Z −1 −1 dm f ◦T = 1E dm f ◦ T = dm dm (Radon-Nikodym derivative) E −1 Exercise 1.1. m f ◦ T m, therefore the Radon-Nikodym derivative exists. Definition: The transfer operator of a non-singular map (X;B; m;T) is the opera- tor Tb : L1(m) ! L1(m) given by −1 dm f ◦ T Z Tb f = ; where m f is the (signed) measure m f (E) := f dm: dm E The previous definition is difficult to work with. In practice one works with the following characterization of Tb f : Proposition 1.1. Tb f is the unique element of L1(m) s.t. that for all test functions R R j 2 L¥, j · (Tb f ) dm = (j ◦ T) · f dm. Proof. The identity holds: For every j 2 L¥, Z Z −1 Z Z Z dm f ◦T −1 ! ! j ·(Tb f ) dm = j · dm dm = jdm f ◦T = (j ◦T)dm f = (j ◦T) f dm (make sure you can justify all =! ). 1 R R The identity characterizes Tb f : Suppose 9h1;h2 2 L s.t. jhi dm = (j ◦T) f dm ¥ R R for all j 2 L . Choose j = sgn(h1 − h2), then jh1 − h2jdm = j(h1 − h2)dm = R R R R jh1dm − jh1dm = j ◦ T f dm − j ◦ T f dm = 0; whence h1 = h2 a.e. Proposition 1.2 (Basic properties). 1. Tb is a positive bounded linear operator with norm equal to one. 2. Tb[(g ◦ T) · f ] = g · (Tb f ) a.e. ( f 2 L1;g 2 L¥), 3. Suppose m is a T-invariant probability measure, then 8 f 2 L1, −1 (Tb f ) ◦ T = Em ( f jT B) a.e. Proof of part 1: Linearity is trivial. Positivity means that if f ≥ 0 a.e., then Tb f ≥ 0 a.e. Let j := 1 , then 0 ≥ R (T f )dm = R j(T f )dm = R (j ◦ T) f dm ≥ 0: [Tb f <0] [Tb f <0] b b | {z } ≥0 It follows that R (T f )dm = 0. This can only happen if m[T f < 0] = 0. [Tb f <0] b b R R Tb is bounded: Let j := sgn(Tb f ), then kTb f k1 = j(Tb f )dm = (j ◦ T) f dm ≤ R kj ◦ Tk¥k f k1 = k f k1, whence kTb f k1 ≤ k f k1. If f > 0, kTb f k1 = jTb f jdm = R R Tb f dm = (1 ◦ T) f dm = k f k1, so kTbk = 1. 1.3 The transfer operator method 5 Exercise 1.2. Prove parts 2 and 3 of the proposition. (Hint for part 3: Show first that every T −1B–measurable function equals j ◦ T with j B-measurable.) Here are some examples of transfer operators. Angle doubling map If T : [0;1] ! [0;1] is T(x) = 2x mod 1, then 1 x x+1 (Tb f )(x) = 2 [ f ( 2 ) + f ( 2 )]. Proof. For every j 2 L¥, 1 Z 1 Z 2 Z 1 j(Tx) f (x)dx = j(2x) f (x)dx + j(2x − 1) f (x)dx 1 0 0 2 Z 1 Z 1 t 1 s+1 s+1 = j(t) f ( 2 )d( 2t) + j(s) f ( 2 )d( 2 ) 0 0 Z 1 1 x x+1 = j(x) · 2 [ f ( 2 ) + f ( 2 )]dx: 0 1 Exercise 1.3 (Gauss map). Let T : [0;1] ! [0;1] be the map T(x) = f x g. Show that ¥ (T f )(x) = 1 f ( 1 ) b ∑ (x+n)2 x+n . n=1 Exercise 1.4 (General piecewise monotonic map). Suppose [0;1] is partitioned into finitely many intervals I1;:::;IN and TjIk : Ik ! T(Ik) is one-to-one and has con- tinuously differentiable extension with non-zero derivative to an e–neighborhood of N −1 0 Ik. Let vk : T(Ik) ! Ik, vk := (TjIk ) . Show that Tb f = ∑ 1T(Ik) · jvkj · f ◦ vk: k=1 1.3 The transfer operator method What dynamical information can we extract from the behavior of Tb? 1 R R ¥ Recall that fn −−−! f weakly in L , if j fndm −−−! j f dm for all j 2 L . n!¥ n!¥ This is weaker than convergence in L1 (give an example!). Proposition 1.3 (Dynamical meaning of convergence of Tbn). n R 1. If Tb f −−−! h f dm weakly in L1 for some non-negative 0 6= f 2 L1 then T has n!¥ an absolutely continuous invariant probability measure, and h is the density. n R 2. If Tb f −−−! f dm weakly in L1 for all f 2 L1 then T is a mixing probability n!¥ preserving map. 1 n L R 3. If Tb f −−−! f dm, then for every j 2 L¥, n!¥ Z Z Z Z n n n jCov( f ;j ◦ T )j := j f j ◦ T dm − f dm jdmj ≤ kTb f − f dmk1kjk¥; n R so the rate of decay of correlations against f is O(kTb f − f dmk1). 6 1 Lecture 1: The transfer operator (60 min) R n w Proof. 1. Assume w.l.o.g. that f dm = 1, then Tb f −−−! h. For every j 2 L¥, n!¥ R R n+1 R n R jhdm = lim j · Tb f dm = lim (j ◦ T)[Tb f ]dm = (j ◦ T)hdm. So mh := hdm is T-invariant. 2. exercise n R n R R R n R 3. jCov( f ;j ◦ T )j = j Tb f jdm − ( f dm)jdmj = j (Tb f − f dm)jdmj. So n n R jCov( f ;j ◦ T )j ≤ kTb f − f dmk1kjk¥. Exercise 1.5 (Dynamical interpretation of eigenvalues). Show: 1. All eigenvalues of the transfer operator have modulus less than or equal to one. 2. The invariant probability densities of T are the non-negative h 2 L1(m) s.t. Thb = h and R hdm = 1. We call hdm an acip(=absolutely continuous invariant probability measure). 3. If Tb has an acip and 1 is a simple eigenvalue of Tb, then the acip is ergodic. “Simple” means that dimfg 2 L1 : Tgb = gg = 1. 4. If Tb has an acip and 1 is simple, and all other eigenvalues of Tb have modulus strictly smaller than one, then the acip is weak mixing. 5. If T is probability preserving and mixing, then Tb has exactly one eigenvalue on the unit circle, equal to one, and this eigenvalue is simple. (Be careful not to confuse L1-eigenvalues with L2-eigenvalues.) Further reading 1. J. Aaronson: An introduction to infinite ergodic theory, Math. Surv.
Recommended publications
  • The Transfer Operator Approach to ``Quantum Chaos
    Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Front page The transfer operator approach to “quantum chaos” Classical mechanics and the Laplace-Beltrami operator on PSL (Z) H 2 \ Tobias M¨uhlenbruch Joint work with D. Mayer and F. Str¨omberg Institut f¨ur Mathematik TU Clausthal [email protected] 22 January 2009, Fernuniversit¨at in Hagen Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions Outline of the presentation 1 Modular surface 2 Spectral theory 3 Geodesics and coding 4 Transfer operator 5 Connection to spectral theory 6 Conclusions Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z The full modular group 2( ) Let PSL2(Z) be the full modular group PSL (Z)= S, T (ST )3 =1 = SL (Z) mod 1 2 h | i 2 {± } 0 1 1 1 1 0 with S = − , T = and 1 = . 1 0 0 1 0 1 a b az+b if z C, M¨obius transformations: z = cz+d ∈ c d a if z = . c ∞ Three orbits: the upper halfplane H = x + iy; y > 0 , the 1 { } projective real line PR and the lower half plane. z , z are PSL (Z)-equivalent if M PSL (Z) with 1 2 2 ∃ ∈ 2 M z1 = z2. The full modular group PSL2(Z) is generated by 1 translation T : z z + 1 and inversion S : z − . 7→ 7→ z (Closed) fundamental domain = z H; z 1, Re(z) 1 . F ∈ | |≥ | |≤ 2 Front Modular surface Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions PSL Z H The modular surface 2( )\ The upper half plane H = x + iy; y > 0 can be viewed as a hyperbolic plane with constant{ negative} curvature 1.
    [Show full text]
  • Arxiv:1910.08491V3 [Math.ST] 3 Nov 2020
    Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cram´er representations and applications Amaury Durand ∗† Fran¸cois Roueff ∗ September 14, 2021 Abstract The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. However, the recent literature on this topic is often based on restrictive assumptions or lacks important insights. In this paper, we follow earlier approaches which fully exploit the normal Hilbert module property of the space of Hilbert- valued random variables. This approach clarifies and completes the isomorphic relationship between the modular spectral domain to the modular time domain provided by the Gramian- Cram´er representation. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram´er-Karhunen-Lo`eve decomposition and harmonic functional principal component analysis without relying on simplifying assumptions. 1 Introduction Functional data analysis has become an active field of research in the recent decades due to technological advances which makes it possible to store longitudinal data at very high frequency (see e.g. [22, 31]), or complex data e.g. in medical imaging [18, Chapter 9], [15], linguistics [28] or biophysics [27]. In these frameworks, the data is seen as valued in an infinite dimensional separable Hilbert space thus isomorphic to, and often taken to be, the function space L2(0, 1) of Lebesgue-square-integrable functions on [0, 1]. In this setting, a 2 functional time series refers to a bi-sequences (Xt)t∈Z of L (0, 1)-valued random variables and the assumption of finite second moment means that each random variable Xt belongs to the L2 Bochner space L2(Ω, F, L2(0, 1), P) of measurable mappings V : Ω → L2(0, 1) such that E 2 kV kL2(0,1) < ∞ , where k·kL2(0,1) here denotes the norm endowing the Hilbert space L2h(0, 1).
    [Show full text]
  • Spectral Gap and Asymptotics for a Family of Cocycles of Perron-Frobenius Operators
    Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mathematics and Statistics c Joseph Anthony Horan, 2020 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. We acknowledge with respect the Lekwungen peoples on whose traditional territory the university stands, and the Songhees, Esquimalt, and WSANE´ C´ peoples whose ¯ historical relationships with the land continue to this day. Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 Supervisory Committee Dr. Christopher Bose, Co-Supervisor (Department of Mathematics and Statistics) Dr. Anthony Quas, Co-Supervisor (Department of Mathematics and Statistics) Dr. Sue Whitesides, Outside Member (Department of Computer Science) ii ABSTRACT At its core, a dynamical system is a set of things and rules for how they change. In the study of dynamical systems, we often ask questions about long-term or average phe- nomena: whether or not there is an equilibrium for the system, and if so, how quickly the system approaches that equilibrium. These questions are more challenging in the non-autonomous (or random) setting, where the rules change over time. The main goal of this dissertation is to develop new tools with which to study random dynamical systems, and demonstrate their application in a non-trivial context.
    [Show full text]
  • An Introduction to Fractal Uncertainty Principle
    An introduction to fractal uncertainty principle Semyon Dyatlov (MIT / UC Berkeley) The goal of this minicourse is to give a brief introduction to fractal uncertainty principle and its applications to transfer operators for Schottky groups Part 1: Schottky groups, transfer operators, and resonances Schottky groups of SL ( 2 IR ) on the action , Using ' 70 d z 3- H = fz E l Im its and on boundary H = IRV { a } by Mobius transformations : f- (Ibd ) ⇒ 8. z = aztbcztd Schottky groups provide interesting nonlinear dynamics on fractal limit sets and appear in many important applications To define a Schottky group, we fix: of r disks • 2. a collection nonintersecting IR in ¢ with centers in := . AIR Q . , Dzr Ij Dj := and 1 . • denote A { ,2r3 . Ifa Er Atr if I = , f - r if rsaE2r a , that • 8 . such , . Kr fix maps . , ' )= ti racial D; Da , E- Pc SLC 2,112) • The Schottky group free ti . is the group generated by . .fr Example of a Schottky group Here is a picture for the case of 4 disks: IC = = Cil K ( ) Dz , 8. ( Dj ) Dz , IDE - =D ID ) - Ds ( IC ID:) BCCI : , Oy , 83 ⇒ A Schottky quotients ' of Ta k i n g the quotient CH , ) action of P we a the , get by surface co - . convex compact hyperbolic µ ' - M - T l H IIF plane # Three-funneled surface in G - funnel infinite end Words and nested intervals the = 2r encodes Recall I 91 . } that , . P of the I := at r generators group , n : • Words of length " = W . an far / Vj , ajt, taj } ' = : . ⇒ = . ⑨ . - A , An OT A , Ah i • Group elements : : = E T - .
    [Show full text]
  • Nonlinear Spectral Calculus and Super-Expanders
    NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS MANOR MENDEL AND ASSAF NAOR Abstract. Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Ces`aroaver- ages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space. Contents 1. Introduction 2 1.1. Coarse non-embeddability 3 1.2. Absolute spectral gaps 5 1.3. A combinatorial approach to the existence of super-expanders 5 1.3.1. The iterative strategy 6 1.3.2. The need for a calculus for nonlinear spectral gaps 7 1.3.3. Metric Markov cotype and spectral calculus 8 1.3.4. The base graph 10 1.3.5. Sub-multiplicativity theorems for graph products 11 2. Preliminary results on nonlinear spectral gaps 12 2.1. The trivial bound for general graphs 13 2.2. γ versus γ+ 14 2.3. Edge completion 18 3. Metric Markov cotype implies nonlinear spectral calculus 19 4. An iterative construction of super-expanders 20 5. The heat semigroup on the tail space 26 5.1. Warmup: the tail space of scalar valued functions 28 5.2. Proof of Theorem 5.1 31 5.3. Proof of Theorem 5.2 34 5.4. Inverting the Laplacian on the vector-valued tail space 37 6. Nonlinear spectral gaps in uniformly convex normed spaces 39 6.1.
    [Show full text]
  • Reproducing Kernel Hilbert Space Compactification of Unitary Evolution
    Reproducing kernel Hilbert space compactification of unitary evolution groups Suddhasattwa Dasa, Dimitrios Giannakisa,∗, Joanna Slawinskab aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA bFinnish Center for Artificial Intelligence, Department of Computer Science, University of Helsinki, Helsinki, Finland Abstract A framework for coherent pattern extraction and prediction of observables of measure-preserving, ergodic dynamical systems with both atomic and continuous spectral components is developed. This framework is based on an approximation of the generator of the system by a compact operator Wτ on a reproducing kernel Hilbert space (RKHS). A key element of this approach is that Wτ is skew-adjoint (unlike regularization approaches based on the addition of diffusion), and thus can be characterized by a unique projection- valued measure, discrete by compactness, and an associated orthonormal basis of eigenfunctions. These eigenfunctions can be ordered in terms of a Dirichlet energy on the RKHS, and provide a notion of coherent observables under the dynamics akin to the Koopman eigenfunctions associated with the atomic part of the spectrum. In addition, the regularized generator has a well-defined Borel functional calculus allowing tWτ the construction of a unitary evolution group fe gt2R on the RKHS, which approximates the unitary Koopman evolution group of the original system. We establish convergence results for the spectrum and Borel functional calculus of the regularized generator to those of the original system in the limit τ ! 0+. Convergence results are also established for a data-driven formulation, where these operators are approximated using finite-rank operators obtained from observed time series. An advantage of working in spaces of observables with an RKHS structure is that one can perform pointwise evaluation and interpolation through bounded linear operators, which is not possible in Lp spaces.
    [Show full text]
  • Asymptotic Spectral Gap and Weyl Law for Ruelle Resonances of Open Partially Expanding Maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich
    Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean-François Arnoldi, Frédéric Faure, Tobias Weich To cite this version: Jean-François Arnoldi, Frédéric Faure, Tobias Weich. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2017, 37 (1), pp.1-58. 10.1017/etds.2015.34. hal-00787781v2 HAL Id: hal-00787781 https://hal.archives-ouvertes.fr/hal-00787781v2 Submitted on 4 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps Jean Francois Arnoldi∗, Frédéric Faure†, Tobias Weich‡ 01-06-2013 Abstract We consider a simple model of an open partially expanding map. Its trapped set in phase space is a fractal set. We first show that there is a well defined K discrete spectrum of Ruelle resonances which describes the asymptotisc of correlation functions for large time and which is parametrized by the Fourier component ν on the neutral direction of the dynamics. We introduce a specific hypothesis on the dynamics that we call “minimal captivity”.
    [Show full text]
  • Spectral Gap and Definability
    SPECTRAL GAP AND DEFINABILITY ISAAC GOLDBRING ABSTRACT. We relate the notions of spectral gap for unitary representations and subfactors with definability of certain important sets in the corresponding structures. We give several applications of this relationship. CONTENTS 1. Introduction 2 1.1. A crash course in continuous logic 3 2. Definability in continuous logic 5 2.1. Generalities on formulae 5 2.2. Definability relative to a theory 7 2.3. Definability in a structure 9 3. Spectral gap for unitary group representations 11 3.1. Generalities on unitary group representations 11 3.2. Introducing spectral gap 12 3.3. Spectral gap and definability 13 3.4. Spectral gap and ergodic theory 15 4. Basic von Neumann algebra theory 17 4.1. Preliminaries 17 4.2. Tracial von Neumann algebras as metric structures 19 4.3. Property Gamma and the McDuff property 20 5. Spectral gap subalgebras 21 5.1. Introducing spectral gap for subalgebras 21 arXiv:1805.02752v1 [math.LO] 7 May 2018 5.2. Spectral gap and definability 22 5.3. Relative bicommutants and e.c. II1 factors 23 5.4. Open questions 24 6. Continuum many theories of II1 factors 25 6.1. The history and the main theorem 25 6.2. The base case 26 6.3. A digression on good unitaries and generalized McDuff factors 27 6.4. The inductive step 28 References 29 Goldbring’s work was partially supported by NSF CAREER grant DMS-1349399. 1 2 ISAAC GOLDBRING 1. INTRODUCTION The notion of definable set is one of (if not the) most important concepts in clas- sical model theory.
    [Show full text]
  • Spectral Perturbation Bounds for Selfadjoint Operators I∗
    Spectral perturbation bounds for selfadjoint operators I∗ KreˇsimirVeseli´c† Abstract We give general spectral and eigenvalue perturbation bounds for a selfadjoint op- erator perturbed in the sense of the pseudo-Friedrichs extension. We also give sev- eral generalisations of the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using analyticity and monotonicity properties (rather than variational principles) and they are general enough to include eigenvalues in gaps of the essential spectrum. 1 Introduction The main purpose of this paper is to derive spectral and eigenvalue bounds for selfadjoint operators. If a selfadjoint operator H in a Hilbert space H is perturbed into T = H + A (1) with, say, a bounded A then the well-known spectral spectral inclusion holds σ(T ) ⊆ {λ : dist(λ, σ(H)) ≤ kAk} . (2) Here σ denotes the spectrum of a linear operator. (Whenever not otherwise stated we shall follow the notation and the terminology of [3].) If H, A, T are finite Hermitian matrices then (1) implies |µk − λk| ≤ kAk, (3) where µk, λk are the non-increasingly ordered eigenvalues of T,H, respectively. (Here and henceforth we count the eigenvalues together with their multiplicities.) Whereas (2) may be called an upper semicontinuity bound the estimate (3) contains an existence statement: each of the intervals [λk − kAk, λk + kAk] contains ’its own’ µk. Colloquially, bounds like (2) may be called ’one-sided’ and those like (3) ’two-sided’. As it is well-known (3) can be refined to another two-sided bound min σ(A) ≤ µk − λk ≤ max σ(A). (4) In [9] the following ’relative’ two-sided bound was derived |µk − λk| ≤ b|λk|, (5) ∗This work was partly done during the author’s stay at the University of Split, Faculty of Electrotechnical Engineering, Mechanical Engineering and Naval Archtecture while supported by the National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia.
    [Show full text]
  • Spectral Structure of Transfer Operators for Expanding Circle Maps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online SPECTRAL STRUCTURE OF TRANSFER OPERATORS FOR EXPANDING CIRCLE MAPS OSCAR F. BANDTLOW, WOLFRAM JUST, AND JULIA SLIPANTSCHUK Abstract. We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators. 1. Introduction One of the major strands of modern ergodic theory is to exploit the rich links between dynamical systems theory and functional analysis, making the powerful tools of the latter available for the benefit of understanding complex dynamical be- haviour. In classical ergodic theory, composition operators occur naturally as basic objects for formulating concepts such as ergodicity or mixing [28]. These operators, known in this context as Koopman operators, are the formal adjoints of transfer op- erators, the spectral data of which provide insight into fine statistical properties of the underlying dynamical systems, such as rates of mixing (see, for example, [2, 7]). There exists a large body of literature on spectral estimates for transfer operators (and hence mixing properties) for various one- and higher-dimensional systems with different degree of expansivity or hyperbolicity (see [1] for an overview). However, to the best of our knowledge, no sufficiently rich class of dynamical systems to- gether with a machinery allowing for the explicit analytic determination of the entire spectrum is known. This is the gap the current contribution aims to fill. In the literature, the term `composition operator' is mostly used to refer to compositions with analytic functions mapping a disk into itself, a setting in which operator-theoretic properties such as boundedness, compactness, and most impor- tantly explicit spectral information are well-established (good references are [23] or the encyclopedia on the subject [9]).
    [Show full text]
  • Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
    Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces Stefan Klus1, Ingmar Schuster2, and Krikamol Muandet3 1Department of Mathematics and Computer Science, Freie Universit¨atBerlin, Germany 2Zalando Research, Zalando SE, Berlin, Germany 3Max Planck Institute for Intelligent Systems, T¨ubingen,Germany Abstract Transfer operators such as the Perron{Frobenius or Koopman operator play an im- portant role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We propose kernel transfer operators, which extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of con- ditional distributions, known as conditional mean embeddings. The proposed numerical methods to compute empirical estimates of these kernel transfer operators subsume ex- isting data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel- based approaches is that they can be applied to any domain where a similarity measure given by a kernel is available. Furthermore, we provide elementary results on eigende- compositions of finite-rank RKHS operators. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis. 1 Introduction Transfer operators such as the Perron{Frobenius or Koopman operator are ubiquitous in molecular dynamics, fluid dynamics, atmospheric sciences, and control theory (Schmid, 2010, Brunton et al., 2016, Klus et al., 2018a).
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Spectral Gap Rigidity and Unique Prime Decomposition Permalink https://escholarship.org/uc/item/1j63188h Author Winchester, Adam Jeremiah Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Spectral Gap Rigidity and Unique Prime Decomposition A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Adam Jeremiah Winchester 2012 c Copyright by Adam Jeremiah Winchester 2012 Abstract of the Dissertation Spectral Gap Rigidity and Unique Prime Decomposition by Adam Jeremiah Winchester Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Sorin Popa, Chair We use malleable deformations combined with spectral gap rigidity theory, in the framework of Popas deformation/rigidity theory to prove unique tensor product decomposition results for II1 factors arising as tensor product of wreath product factors and free group factors. We also obtain a similar result regarding measure equivalence decomposition of direct products of such groups. ii The dissertation of Adam Jeremiah Winchester is approved. Dimitri Shlyakhtenko Yehuda Shalom Jens Palsberg Sorin Popa, Committee Chair University of California, Los Angeles 2012 iii To All My Friends iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Preliminaries ::::::::::::::::::::::::::::::::::::: 8 2.1 Intro to von Neumann Algebras . 8 2.2 von Neumann Subalgebras . 13 2.3 GNS and Bimodules . 14 2.4 The Basic Construction . 17 2.5 S-Malleable Deformations . 18 2.6 Spectral Gap Rigidity . 20 2.7 Intertwining By Bimodules . 20 3 Relative Amenability :::::::::::::::::::::::::::::::: 22 3.1 Definition .
    [Show full text]