Eigenvalues in Spectral Gaps of Differential Operators
J. Spectr. Theory 2 (2012), 293–320 Journal of Spectral Theory DOI 10.4171/JST/30 © European Mathematical Society Eigenvalues in spectral gaps of differential operators Marco Marletta1 and Rob Scheichl Abstract. Spectral problems with band-gap spectra arise in numerous applications, including the study of crystalline structures and the determination of transmitted frequencies in pho- tonic waveguides. Numerical discretization of these problems can yield spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint operators which avoids spectral pollution. The method perturbs the problem into a dissipative problem in which the eigenvalues to be calculated are lifted out of the convex hull of the essential spectrum, away from the spectral pollution. The method is analysed here in the context of one-dimensional Schrödinger equations on the half line, but is applicable in a much wider variety of contexts, including PDEs, block operator matrices, multiplication operators, and others. Mathematics Subject Classification (2010). 34L, 65L15. Keywords. Eigenvalue, spectral pollution, self-adjoint, dissipative, Schrödinger, spectral gap, spectral band, essential spectrum, discretization, variational method. 1. Introduction In the numerical calculation of the spectrum of a self-adjoint operator, one of the most difficult cases to treat arises when the spectrum has band-gap structure and one wishes to calculate eigenvalues in the spectral gaps above the infimum of the essential spectrum. The reason for this difficulty is that variational methods will generally result in spectral pollution (see, e.g., Rappaz, Sanchez Hubert, Sanchez Palencia and Vassiliev [22]): following discretization, the spectral gaps fill up with eigenvalues of the discrete problem which are so closely spaced that it is impossible to distinguish the spectral bands from the spectral gaps.
[Show full text]