The Laplace-Beltrami Operator, Quadratic Formsand Symmetry

Total Page:16

File Type:pdf, Size:1020Kb

The Laplace-Beltrami Operator, Quadratic Formsand Symmetry UNIVERSIDAD CARLOS III DE MADRID TESIS DOCTORAL ON THE THEORY OF SELF-ADJOINT EXTENSIONS OF THE LAPLACE-BELTRAMI OPERATOR, QUADRATIC FORMS AND SYMMETRY Autor: Juan Manuel Perez´ Pardo Directores: Prof. Alberto Ibort Latre Prof. Fernando Lledo´ Macau DEPARTAMENTO DE MATEMATICAS´ Leganes,´ 2013 Firma del Tribunal Calificador Firma Presidente: Vocal: Secretario: Calificacion´ : Leganes,´ de de ON THE THEORY OF SELF-ADJOINT EXTENSIONS OF THE LAPLACE-BELTRAMI OPERATOR, QUADRATIC FORMS AND SYMMETRY PhD Thesis Author: Juan Manuel Perez´ Pardo Advisors: Prof. Alberto Ibort Latre Prof. Fernando Lledo´ Macau Por un mundo feliz CONTENTS CONTENTS iii AGRADECIMIENTOS v RESUMEN ix 1 INTRODUCTION 1 2 PRELIMINARIES 9 2.1 General theory of symmetric operators in Hilbert space . 9 2.2 Closable quadratic forms . 14 2.3 Laplace-Beltrami operator on Riemannian manifolds and Sobolev spaces . 18 2.4 Scales of Hilbert spaces . 22 3 CLOSABLE AND SEMI-BOUNDED QUADRATIC FORMS ASSOCIATED TO THE LAPLACE-BELTRAMI OPERATOR 25 3.1 A class of closable quadratic forms on a Riemannian manifold . 26 3.1.1 Isotropic subspaces . 27 3.1.2 Admissible unitaries and closable quadratic forms . 32 3.2 Closable and semi-bounded quadratic forms . 34 3.2.1 Functions and operators on collar neighbourhoods . 34 3.2.2 Quadratic forms and extensions of the minimal Laplacian 40 iv CONTENTS 3.3 Examples . 45 4 NUMERICAL SCHEME TO SOLVE THE SPECTRAL PROBLEM OF THE LAPLACE-BELTRAMI OPERATOR 53 4.1 Convergence of the numerical scheme . 55 4.2 Finite element method for the eigenvalue problem in dimension 1 . 57 4.2.1 Finite elements for general self-adjoint boundary conditions 59 4.2.2 Conditioning of the boundary matrix . 64 4.2.3 The spectral pencil . 67 N 4.2.4 The family fS gN is an approximating family of QU . 69 4.3 Numerical experiments . 71 5 SELF-ADJOINT EXTENSIONS WITH SYMMETRY AND REPRESENTA- TION OF QUADRATIC FORMS 83 5.1 General theory of self-adjoint extensions with symmetry . 85 5.2 Invariant quadratic forms . 88 5.3 A class of invariant self-adjoint extensions of the Laplace-Beltrami operator . 91 5.4 Examples . 95 5.5 Representation of generic unbounded quadratic forms . 99 CONCLUSIONS AND FURTHER WORK 111 LIST OF PUBLICATIONS 117 LIST OF SYMBOLS 119 REFERENCES 123 AGRADECIMIENTOS Despues´ de varios anos˜ embarcado en esta aventura ha llegado el momento de escribir los agradecimientos. Aunque para algunas personas escribir esta parte de la tesis pueda ser poco mas´ que un tramite´ o una obligacion,´ yo me veo en la ne- cesidad de agradecer verdaderamente todo el apoyo que he recibido y el esfuerzo que mucha gente me ha dedicado durante todo este tiempo. En primer lugar quiero citar a mis flamantes directores de tesis Alberto Ibort y Fernando Lledo.´ No tengo palabras para describir el gran respeto que me merecen como personas y como cient´ıficos. La cualidad que mas´ aprecio en Alberto (co- mo cient´ıfico, como persona no sabr´ıa por donde´ empezar) es su capacidad para vislumbrar la solucion´ de un problema con la m´ınima informacion,´ por muy com- plejo que este´ sea , “¡Que s´ı que sale hombre, que s´ı!” Por poner una analog´ıa de como´ es Alberto a nivel cient´ıfico aqu´ı teneis´ el siguiente acertijo: Se abre el telon´ y aparecen un tornillo, una goma elastica´ y un lapiz.´ Se cierra el telon.´ Se abre el telon´ y aparece un formula´ 1. ¿Quien´ ha pasado por all´ı?1 De Fernando me gustar´ıa destacar su atencion´ al detalle, “Es cuestion´ de esti- lo”, que mas´ de una vez nos ha costado una discusion´ pero que sin lugar a dudas ha mejorado notablemente los contenidos que se encuentran en esta memoria. Much´ısimas gracias a los dos y a vuestras maravillosas familias. Tambien´ quer´ıa agradecer a los profesores Beppe Marmo, “It is better not to 1 er. MacGyv vi AGRADECIMIENTOS increase Entropy”; A.P. Balachandran, “Why is that so?”; Manolo Asorey, “¿Yo he dicho eso?” y Franco Ventriglia, “Scorzette d’arancia ricoperte di cioccolato” todos sus comentarios, ensenanzas˜ y hospitalidad. Las discusiones con ellos han dado lugar a muchos de los resultados que aparecen en esta memoria. Otros profesores y miembros del departamento de matematicas´ de la UCIIIM que han contribuido en mayor o menor medida a mi formacion´ predoctoral y a la realizacion´ de esta tesis son Olaf Post, Froilan´ Mart´ınez, Daniel Peralta, Julio Moro, Bernardo de la Calle y Alberto Calvo. A lo largo de estos anos˜ he conocido muchos companeros˜ y amigos y, aunque va a ser dif´ıcil citarlos a todos, voy a hacer un intento. Todos ellos han contribuido a crear un ambiente agradable donde poder trabajar. Gio, por todos los ratos del cafe.´ Sveto, - Hoy das tu´ el seminario intergrupos, ¿no? - ¿De verdad? Ay, Ay, Ay. Sergio, que se puede hablar con el´ a traves´ de las paredes. Edo y Daniel, los com- paneros˜ silenciosos. Espero que piensen lo mismo de mi. Jele, con su peculiar vision´ del mundo, “¡En Londres se come bien! Hay ensaladas, comida china, tai- landesa, filipina,. ” Alberto Lopez,´ “Esto es un calculillo”. Leonardo, “No puedo dormir en esa cama”. Esta ultima´ frase explica algunos acontecimientos recientes. Y, en definitiva, a todos con los que he tenido el placer de trabajar estos anos.˜ Esta lista es larga y si me olvido a alguien me lo va a recordar toda la vida. Os pido por favor a los que leais´ esta lista que no le deis mucha publicidad, podeis´ herir la sensibilidad de alguien: Javi, Elyzabeth, Pedro, Julio, Kenier, Alfredo, Mar´ıa, Ulises, Hector, Mari Francis, Natalia, Walter y Yadira. No me olvido del grupo de los seminarios informales Alejandro, Borja, Car- los, Edu, Emilio y Marco. Por cierto, Borja, nos debes uno. A los amigotes de Madrid y Valencia, esa fuerza poderosa que ha empujado en contra de la finalizacion´ de esta memoria. “Solo´ una cana˜ y a casa.” “¿Ya te vas? ¡Si acabo de llegar!” vii “¿Bo que pacha?” “Ataco Ucrania desde Ural.” “¿Cuando´ vienes?” “¿Manana˜ piscina?” “¿Una partidita?” “Tienes que comprarte la Play.” Ya sabeis´ quienes sois, no empiezo a citaros que corro el riesgo de acabar como Almodovar. Tambien´ le quiero agradecer a toda mi familia, incluyendo la pol´ıtica, todo su apoyo. En especial a mi madre y a mi hermano. “Hijo, ¿en que´ piensas?” “Hijo, ¿en que´ piensas?” “Hijo, ¿en que´ estas´ pensando?” “Hijo, me preocupas.” Los que compartan profesion´ conmigo entenderan´ lo que quiero expresar. ¿Que´ se puede decir de una madre que te lo ha dado todo? Pues eso. A mi hermano, “Los hipsters son como nuestros modernetes pero con un toque lumpen muy calcula- do”, le deseo lo mejor en estos momentos de cambio y le tengo que agradecer haberme ensenado˜ que siempre hay otra manera de hacer las cosas. Y por supuesto a Lara, “Juanmi. ”, “¡Ay Galan!´ ”, “¿Y mi sorpresa?” Si hay una persona que sabe que este trabajo no acaba cuando sales del despacho, es ella. Por eso, a parte de corresponder su amor, carino˜ y comprension´ tambien´ quiero disculparme por todas las veces que no puedo dedicarle el tiempo que se merece. En resumen, a todos, mil gracias. Juan Manuel Perez´ Pardo Leganes,´ 2013 This work was partly supported by the project MTM2010-21186-C02-02 of the spanish Min- isterio de Ciencia e Innovacion´ , QUITEMAD programme P2009 ESP-1594 and the 2011 and 2012 mobility grants of “Universidad Carlos III de Madrid”. RESUMEN El objetivo principal de esta memoria es analizar en detalle tanto la construc- cion´ de extensiones autoadjuntas del operador de Laplace-Beltrami definido sobre una variedad Riemanniana compacta con frontera, como el papel que juegan las formas cuadraticas´ a la hora de describirlas. Mas´ aun,´ queremos enfatizar el papel que juegan las formas cuadraticas´ a la hora de describir sistemas cuanticos.´ Es bien conocido que −∆min, la extension´ minimal del operador de Laplace- Beltrami, es autoadjunta cuando la variedad Riemanniana no tiene frontera. Sin embargo, cuando la variedad Riemanniana tiene frontera este operador es simetri-´ co pero no autoadjunto. Esta situacion´ es comun´ en el el analisis´ de sistemas cuanticos´ con frontera. Por ejemplo, el operador anterior describe la dinamica´ de una part´ıcula libre confinada a desplazarse por la variedad. El analisis´ de sistemas cuanticos´ con frontera esta´ recibiendo atencion´ creciente por parte de la comuni- dad ya que hay un gran numero´ de situaciones f´ısicas en las que la frontera juega un papel prominente. Por citar algunos ejemplos: el efecto Hall cuantico,´ los ais- lantes topologicos,´ el efecto Casimir, los grafos cuanticos,´ etc. Otras situaciones f´ısicas en las que la frontera juega un papel importante es en el diseno˜ de mode- los efectivos que describen las interacciones con impurezas o con interfases entre materiales, vease´ [A+05] y las referencias all´ı citadas. Definir un operador auto- adjunto en un sistema con frontera requiere que ciertas condiciones de contorno sean especificadas. Resulta por lo tanto de gran importancia fijar las condiciones de contorno apropiadas, ya que la dinamica´ de un sistema cuantico´ no queda bien determinada hasta que se haya elegido un operador autoadjunto que la describa. La importancia de los operadores autoadjuntos en Mecanica´ Cuantica´ radica en que, x RESUMEN de acuerdo con los postulados de la Mecanica´ Cuantica,´ son interpretados como las magnitudes observables de los sistemas que describen. Su espectro se interpre- ta como los posibles resultados de un proceso de medida. Mas´ aun,´ el teorema de Stone [Sto32] establece una correspondencia un´ıvoca entre grupos uniparametri-´ cos fuertemente continuos y operadores autoadjuntos. Por ello, los operadores au- toadjuntos son los principales objetos que caracterizan la evolucion´ unitaria de un sistema cuantico.´ Vale la pena mencionar en este punto que aunque el espectro de los operadores autoadjuntos constituya el conjunto de posibles resultados para un proceso de medida, es la forma cuadratica´ asociada a ellos, hΦ ;T Φi, siendo T el operador autoadjunto, la que describe el valor esperado resultado de una medida cuando el estado del sistema queda descrito por el vector de estado Φ .
Recommended publications
  • Spectral Gap and Asymptotics for a Family of Cocycles of Perron-Frobenius Operators
    Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mathematics and Statistics c Joseph Anthony Horan, 2020 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. We acknowledge with respect the Lekwungen peoples on whose traditional territory the university stands, and the Songhees, Esquimalt, and WSANE´ C´ peoples whose ¯ historical relationships with the land continue to this day. Spectral gap and asymptotics for a family of cocycles of Perron-Frobenius operators by Joseph Anthony Horan MSc, University of Victoria, 2015 BMath, University of Waterloo, 2013 Supervisory Committee Dr. Christopher Bose, Co-Supervisor (Department of Mathematics and Statistics) Dr. Anthony Quas, Co-Supervisor (Department of Mathematics and Statistics) Dr. Sue Whitesides, Outside Member (Department of Computer Science) ii ABSTRACT At its core, a dynamical system is a set of things and rules for how they change. In the study of dynamical systems, we often ask questions about long-term or average phe- nomena: whether or not there is an equilibrium for the system, and if so, how quickly the system approaches that equilibrium. These questions are more challenging in the non-autonomous (or random) setting, where the rules change over time. The main goal of this dissertation is to develop new tools with which to study random dynamical systems, and demonstrate their application in a non-trivial context.
    [Show full text]
  • Nonlinear Spectral Calculus and Super-Expanders
    NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS MANOR MENDEL AND ASSAF NAOR Abstract. Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Ces`aroaver- ages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space. Contents 1. Introduction 2 1.1. Coarse non-embeddability 3 1.2. Absolute spectral gaps 5 1.3. A combinatorial approach to the existence of super-expanders 5 1.3.1. The iterative strategy 6 1.3.2. The need for a calculus for nonlinear spectral gaps 7 1.3.3. Metric Markov cotype and spectral calculus 8 1.3.4. The base graph 10 1.3.5. Sub-multiplicativity theorems for graph products 11 2. Preliminary results on nonlinear spectral gaps 12 2.1. The trivial bound for general graphs 13 2.2. γ versus γ+ 14 2.3. Edge completion 18 3. Metric Markov cotype implies nonlinear spectral calculus 19 4. An iterative construction of super-expanders 20 5. The heat semigroup on the tail space 26 5.1. Warmup: the tail space of scalar valued functions 28 5.2. Proof of Theorem 5.1 31 5.3. Proof of Theorem 5.2 34 5.4. Inverting the Laplacian on the vector-valued tail space 37 6. Nonlinear spectral gaps in uniformly convex normed spaces 39 6.1.
    [Show full text]
  • Spectral Gap and Definability
    SPECTRAL GAP AND DEFINABILITY ISAAC GOLDBRING ABSTRACT. We relate the notions of spectral gap for unitary representations and subfactors with definability of certain important sets in the corresponding structures. We give several applications of this relationship. CONTENTS 1. Introduction 2 1.1. A crash course in continuous logic 3 2. Definability in continuous logic 5 2.1. Generalities on formulae 5 2.2. Definability relative to a theory 7 2.3. Definability in a structure 9 3. Spectral gap for unitary group representations 11 3.1. Generalities on unitary group representations 11 3.2. Introducing spectral gap 12 3.3. Spectral gap and definability 13 3.4. Spectral gap and ergodic theory 15 4. Basic von Neumann algebra theory 17 4.1. Preliminaries 17 4.2. Tracial von Neumann algebras as metric structures 19 4.3. Property Gamma and the McDuff property 20 5. Spectral gap subalgebras 21 5.1. Introducing spectral gap for subalgebras 21 arXiv:1805.02752v1 [math.LO] 7 May 2018 5.2. Spectral gap and definability 22 5.3. Relative bicommutants and e.c. II1 factors 23 5.4. Open questions 24 6. Continuum many theories of II1 factors 25 6.1. The history and the main theorem 25 6.2. The base case 26 6.3. A digression on good unitaries and generalized McDuff factors 27 6.4. The inductive step 28 References 29 Goldbring’s work was partially supported by NSF CAREER grant DMS-1349399. 1 2 ISAAC GOLDBRING 1. INTRODUCTION The notion of definable set is one of (if not the) most important concepts in clas- sical model theory.
    [Show full text]
  • Spectral Perturbation Bounds for Selfadjoint Operators I∗
    Spectral perturbation bounds for selfadjoint operators I∗ KreˇsimirVeseli´c† Abstract We give general spectral and eigenvalue perturbation bounds for a selfadjoint op- erator perturbed in the sense of the pseudo-Friedrichs extension. We also give sev- eral generalisations of the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using analyticity and monotonicity properties (rather than variational principles) and they are general enough to include eigenvalues in gaps of the essential spectrum. 1 Introduction The main purpose of this paper is to derive spectral and eigenvalue bounds for selfadjoint operators. If a selfadjoint operator H in a Hilbert space H is perturbed into T = H + A (1) with, say, a bounded A then the well-known spectral spectral inclusion holds σ(T ) ⊆ {λ : dist(λ, σ(H)) ≤ kAk} . (2) Here σ denotes the spectrum of a linear operator. (Whenever not otherwise stated we shall follow the notation and the terminology of [3].) If H, A, T are finite Hermitian matrices then (1) implies |µk − λk| ≤ kAk, (3) where µk, λk are the non-increasingly ordered eigenvalues of T,H, respectively. (Here and henceforth we count the eigenvalues together with their multiplicities.) Whereas (2) may be called an upper semicontinuity bound the estimate (3) contains an existence statement: each of the intervals [λk − kAk, λk + kAk] contains ’its own’ µk. Colloquially, bounds like (2) may be called ’one-sided’ and those like (3) ’two-sided’. As it is well-known (3) can be refined to another two-sided bound min σ(A) ≤ µk − λk ≤ max σ(A). (4) In [9] the following ’relative’ two-sided bound was derived |µk − λk| ≤ b|λk|, (5) ∗This work was partly done during the author’s stay at the University of Split, Faculty of Electrotechnical Engineering, Mechanical Engineering and Naval Archtecture while supported by the National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Spectral Gap Rigidity and Unique Prime Decomposition Permalink https://escholarship.org/uc/item/1j63188h Author Winchester, Adam Jeremiah Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Spectral Gap Rigidity and Unique Prime Decomposition A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Adam Jeremiah Winchester 2012 c Copyright by Adam Jeremiah Winchester 2012 Abstract of the Dissertation Spectral Gap Rigidity and Unique Prime Decomposition by Adam Jeremiah Winchester Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Sorin Popa, Chair We use malleable deformations combined with spectral gap rigidity theory, in the framework of Popas deformation/rigidity theory to prove unique tensor product decomposition results for II1 factors arising as tensor product of wreath product factors and free group factors. We also obtain a similar result regarding measure equivalence decomposition of direct products of such groups. ii The dissertation of Adam Jeremiah Winchester is approved. Dimitri Shlyakhtenko Yehuda Shalom Jens Palsberg Sorin Popa, Committee Chair University of California, Los Angeles 2012 iii To All My Friends iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Preliminaries ::::::::::::::::::::::::::::::::::::: 8 2.1 Intro to von Neumann Algebras . 8 2.2 von Neumann Subalgebras . 13 2.3 GNS and Bimodules . 14 2.4 The Basic Construction . 17 2.5 S-Malleable Deformations . 18 2.6 Spectral Gap Rigidity . 20 2.7 Intertwining By Bimodules . 20 3 Relative Amenability :::::::::::::::::::::::::::::::: 22 3.1 Definition .
    [Show full text]
  • Eigenvalues in Spectral Gaps of Differential Operators
    J. Spectr. Theory 2 (2012), 293–320 Journal of Spectral Theory DOI 10.4171/JST/30 © European Mathematical Society Eigenvalues in spectral gaps of differential operators Marco Marletta1 and Rob Scheichl Abstract. Spectral problems with band-gap spectra arise in numerous applications, including the study of crystalline structures and the determination of transmitted frequencies in pho- tonic waveguides. Numerical discretization of these problems can yield spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint operators which avoids spectral pollution. The method perturbs the problem into a dissipative problem in which the eigenvalues to be calculated are lifted out of the convex hull of the essential spectrum, away from the spectral pollution. The method is analysed here in the context of one-dimensional Schrödinger equations on the half line, but is applicable in a much wider variety of contexts, including PDEs, block operator matrices, multiplication operators, and others. Mathematics Subject Classification (2010). 34L, 65L15. Keywords. Eigenvalue, spectral pollution, self-adjoint, dissipative, Schrödinger, spectral gap, spectral band, essential spectrum, discretization, variational method. 1. Introduction In the numerical calculation of the spectrum of a self-adjoint operator, one of the most difficult cases to treat arises when the spectrum has band-gap structure and one wishes to calculate eigenvalues in the spectral gaps above the infimum of the essential spectrum. The reason for this difficulty is that variational methods will generally result in spectral pollution (see, e.g., Rappaz, Sanchez Hubert, Sanchez Palencia and Vassiliev [22]): following discretization, the spectral gaps fill up with eigenvalues of the discrete problem which are so closely spaced that it is impossible to distinguish the spectral bands from the spectral gaps.
    [Show full text]
  • Notes by Fred Naud
    HECKE OPERATORS AND SPECTRAL GAPS ON COMPACT LIE GROUPS. FRED´ ERIC´ NAUD, EXTENDED VERSION OF TALK AT PEYRESQ, MAY 22TH 2016 Abstract. In these notes we review some of the recent progress on questions related to spectral gaps of Hecke operators on compact Lie groups. In particular, we discuss the historical Ruziewicz problem that motivated the discovery of the first examples, followed by the work of Gamburd-Jakobson-Sarnak [5], Bourgain-Gamburd [3],[2] and also the recent paper of Benoist-Saxc´e[1]. 1. Introduction Let G be a compact connected Lie Group whose normalized Haar measure is denoted by m. Let µ be a probability measure on G. On the Hilbert space L2(G; dm), we define a convolution operator by Z Tµ(f)(x) := f(xg)dµ(g): G 2 2 We can check easily that Tµ : L ! L is bounded linear with norm 1. The constant function 1 is an obvious eigenfunction related to the eigenvalue 1. If in addition µ is symmetric i.e. −1 µ(A ) = µ(A) for all Borel set A, then Tµ is self-adjoint. The main purpose of these notes is the following question. Set Z 2 2 L0(G) := f 2 L (G): fdm = 0 : G 2 Clearly L0 is a closed Tµ-invariant space. If we have (ρsp is the spectral radius) ρsp(Tµj 2 ) < 1; L0 then we say that Tµ has a spectral gap. There is an easy case: if µ is symmetric and has a continuous density with respect to Haar, then by Ascoli-Arzuela Tµ is a compact operator and one can check that 1 is a simple eigenvalue while −1 is not in the spectrum.
    [Show full text]
  • Spectral Algorithms
    Spectral Algorithms Ravindran Kannan Santosh Vempala August, 2009 ii Summary. Spectral methods refer to the use of eigenvalues, eigenvectors, sin- gular values and singular vectors. They are widely used in Engineering, Ap- plied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to \discrete" as well \continuous" problems. This book describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. In the first part of the book, we present applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A fea- ture of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on \sampling on the fly” from massive matrices. Good estimates of singular values and low rank ap- proximations of the whole matrix can be provably derived from a sample. Our main emphasis in the second part of the book is to present these sampling meth- ods with rigorous error bounds. We also present recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems. Contents I Applications 1 1 The Best-Fit Subspace 3 1.1 Singular Value Decomposition . .4 1.2 Algorithms for computing the SVD . .8 1.3 The k-variance problem . .8 1.4 Discussion . 11 2 Mixture Models 13 2.1 Probabilistic separation . 14 2.2 Geometric separation . 14 2.3 Spectral Projection .
    [Show full text]
  • On Hyperboundedness and Spectrum of Markov Operators
    On hyperboundedness and spectrum of Markov operators Laurent Miclo Institut de Math´ematiques de Toulouse Plan of the talk 1 Høegh-Krohn and Simon’s conjecture 2 Higher order Cheeger inequalities in the finite setting 3 An approximation procedure 4 General higher order Cheeger’s inequalities 5 Quantitative links between hyperboundedness and spectrum Reversible Markov operators On a probability space S, S,µ , a self-adjoint operator 2 2 p q M : L µ L µ is said to be Markovian if µ-almost surely, p qÑ p q 2 f L µ , f 0 M f 0 @ P p q ě ñ r sě M 1 1 r s “ So M admits a spectral decomposition: there exists a projection-valued measure El 1 1 such that p qlPr´ , s 1 M l dEl “ 1 ż´ and M is said to be ergodic if 2 f L µ , Mf f f Vect 1 @ P p q “ ñ P p q 2 namely if E1 E1 L µ Vect 1 . p ´ ´qr p qs “ p q Hyperboundedness Stronger requirement: M has a spectral gap if there exists λ 0 2 ą such that E1 E1 λ L µ Vect 1 . Spectral gap: the p ´ ´ qr p qs “ p q supremum of such λ. The Markov operator M is hyperbounded if there exists p 2 such ą that M L2 Lp } } pµqÑ pµq ă `8 Theorem A self-adjoint ergodic and hyperbounded Markovian operator admits a spectral gap. This result was conjectured by Høegh-Krohn and Simon [1972], in the context of Markovian semi-groups.
    [Show full text]
  • Spectral Deformations of One-Dimensional Schrö
    SPECTRAL DEFORMATIONS OF ONE-DIMENSIONAL SCHRODINGER OPERATORS E GESZTESY, B. SIMON* AND G. TESCHL Abstract. We provide a complete spectral characterization of a new method of constructing isospectral (in fact, unitary) deformations of general Schrrdinger operators H = -d2/d.x 2 + V in L2(/l~). Our technique is connected to Dirichlet data, that is, the spectrum of the operator H D on L2((-~,x0)) @ L2((x0, oo)) with a Difichlet boundary condition at x 0. The transformation moves a single eigenvalue of H D and perhaps flips which side of x 0 the eigenvalue lives. On the remainder of the spectrum, the transformation is realized by a unitary operator. For cases such as V(x) ---, ~ as Ixl --" ~, where V is uniquely determined by the spectrum of H and the Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only by the asymptotics as E ~ oo. w Introduction Spectral deformations of Schrrdinger operators in L2(/R), isospectral and cer- tain classes of non-isospectral ones, have attracted a lot of interest over the past three decades due to their prominent role in connection with a variety of top- ics, including the Korteweg-de Vries (KdV) hierarchy, inverse spectral problems, supersymmetric quantum mechanical models, level comparison theorems, etc. In fact, the construction of N-soliton solutions of the KdV hierarchy (and more gener- ally, the construction of solitons relative to reflectionless backgrounds) is a typical example of a non-isospectral deformation of H = -d2/dx 2 in L2(R) since the resulting deformation [1 = -d2/dx 2 + re" acquires an additional point spectrum {A1,..., Au} C (-e~, O) such that o'(H) = or(H) tO {A1,..., AN} (cr(.) abbreviating the spectrum).
    [Show full text]
  • QMATH14: Mathematical Results in Quamtum Physics – Abstracts
    QMath14: Mathematical Results in Quantum Physics Aarhus University, 12–16 August 2019 Programme and abstracts – including posters Programme . .next page Abstracts . page 18 Posters . page 63 http://conferences.au.dk/qmath14/ Last update: 2019-08-13 09:53:41 Foto: Anders Trærum, AU Communication Programme Monday, 12 August 09:00–12:00 Mini course A quantum information travel guide for mathematicians Lecturer: David Pérez García Location: Aud E (1533.103) 12:00–14:00 Lunch Location: MATH Canteen (1536, ground floor) 14:00–15:00 Plenary talk Zeno and the bomb Michael Wolf Chair: Pavel Exner Location: Aud E (1533.103) 15:00–15:30 Coffee break 15:30–16:30 Plenary talk An update on Many-Body Localization Wojciech De Roeck Chair: Pavel Exner Location: Aud E (1533.103) 16:30–17:00 Break 17:00– Welcome reception 1 Tuesday, 13 August 09:30–10:30 Plenary talk Quantized quantum transport in interacting systems Sven Bachmann Chair: Simone Warzel Location: Aud E (1533.103) 10:30–11:00 Break 11:00–12:00 Plenary talk Universal Singularities of Random Matrices Torben Krüger Chair: Simone Warzel Location: Aud E (1533.103) 12:00–14:00 Lunch Location: MATH Canteen (1536, ground floor) 14:00–15:30 Parallel sessions – Main speakers Spectral Theory in Aud F (1534.125) see page 8 Quantum Information in Aud G1 (1532.116) see page 9 Many-Body Systems in Aud G2 (1532.122) see page 10 Random Systems in Koll G3 (1532.218) see page 11 Condensed Matter in Koll G4 (1532.222) see page 12 15:30–16:00 Coffee break 2 16:00–17:55 Parallel sessions – Contributed speakers Spectral
    [Show full text]
  • Introduction to the Transfer Operator Method
    Omri Sarig Introduction to the transfer operator method Winter School on Dynamics Hausdorff Research Institute for Mathematics, Bonn, January 2020 Contents 1 Lecture 1: The transfer operator (60 min) ......................... 3 1.1 Motivation . .3 1.2 Definition, basic properties, and examples . .3 1.3 The transfer operator method . .5 2 Lecture 2: Spectral Gap (60 min) ................................ 7 2.1 Quasi–compactness and spectral gap . .7 2.2 Sufficient conditions for quasi-compactness . .9 2.3 Application to continued fractions. .9 3 Lecture 3: Analytic perturbation theory (60 min) . 13 3.1 Calculus in Banach spaces . 13 3.2 Resolvents and eigenprojections . 14 3.3 Analytic perturbations of operators with spectral gap . 15 4 Lecture 4: Application to the Central Limit Theorem (60 min) . 17 4.1 Spectral gap and the central limit theorem . 17 4.2 Background from probability theory . 17 4.3 The proof of the central limit theorem (Nagaev’s method) . 18 5 Lecture 5 (time permitting): Absence of spectral gap (60 min) . 23 5.1 Absence of spectral gap . 23 5.2 Inducing . 23 5.3 Operator renewal theory . 24 A Supplementary material ........................................ 27 A.1 Conditional expectations and Jensen’s inequality . 27 A.2 Mixing and exactness for the Gauss map . 30 A.3 Hennion’s theorem on quasi-compactness . 32 A.4 The analyticity theorem . 40 A.5 Eigenprojections, “separation of spectrum”, and Kato’s Lemma . 41 A.6 The Berry–Esseen “Smoothing Inequality” . 43 1 Lecture 1 The transfer operator 1.1 Motivation A thought experiment Drop a little bit of ink into a glass of water, and then stir it with a tea spoon.
    [Show full text]