Slip Rates and Kinematics of Active Crustal Faults in the Central Oregon Cascades
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDF (Chapter5 Doubleside.Pdf)
202 Chapter 5 FUTURE WORK There is more work is planned for these projects. Some of the proposed future work fell out of the questions and problems that arise while first attempting to solve a problem. Some of it was originally intended to be encompassed in the thesis work, but work at an earlier stage grew to dominate the project as a result of the sheer volume of data available. Many questions were left unanswered in the work described in Chapter 4. It is not clear why the MM5 does not predict the secondary winds that clearly must exist in the current wind regime. These winds do not appear in GFDL GCM model runs, and they may not exist in any current atmospheric model. It is possible that they are produced by rare storms (i.e., storms that occur once a decade or century), and I would like to look into the possibility of observing or predicting these storms. The MM5 also does not predict winds strong enough to lift basaltic grains into saltation. This may simply be a problem of model resolution, and it is not a difficult prospect to run the model at a higher resolution and/or to output the strongest hourly winds at each grid point rather than the winds at the top of each hour. There is also the problem that the MM5 is meant to hold subgrids that are no more than three times smaller than their parent grids – and yet our model runs at a scale of 10 km were more than an order of magnitude higher resolution than the parent grid. -
Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Hazard Annex Earthquake
Hazard Annex Earthquake Northeast Oregon Multi-Jurisdictional Natural Hazard Mitigation Plan Page P-1 ISSN 0270-952X STATE OF OREGON OPEN-FILE REPORT 03-02 DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Map of Selected Earthquakes for Oregon, VICKI S. McCONNELL, ACTING STATE GEOLOGIST Map of Selected Earthquakes for Oregon, 1841 through 2002 1841 through 2002 By Clark A. Niewendorp and Mark E. Neuhaus 2003 Astoria WASHINGTON IDAHO COLUMBIA 46° CLATSOP Saint Helens Pendleton Hood River WASHINGTON WALLOWA The Dalles UMATILLA TILLAMOOK Portland Hillsboro MULTNOMAH Moro HOOD GILLIAM Enterprise Tillamook RIVER Oregon City Heppner La Grande YAMHILL SHERMAN MORROW UNION McMinnville CLACKAMAS Condon WASCO Fossil 45° Dallas Salem MARION POLK WHEELER Baker Newport Albany BAKER JEFFERSON Madras LINCOLN Corvallis GRANT LINN BENTON Canyon City Prineville CROOK Eugene Bend Vale 44° LANE DESCHUTES Burns Magnitude 7 and higher HARNEY Coquille Roseburg Magnitude 6.0 - 6.9 COOS DOUGLAS Magnitude 5.0 - 5.9 MALHEUR Magnitude 4.0 - 4.9 LAKE Magnitude 3.0 - 3.9 Magnitude 1.0 - 2.9 KLAMATH Magnitude 0.0 - 0.9 Fault - Holocene JACKSON CURRY Fault - Late quaternary Grants Pass Gold Beach State line Medford JOSEPHINE County line Klamath Falls County seat Lakeview IDAHO NEVADA 42° CALIFORNIA NEVADA 126° 125° 124° 123° 122° 121° 120° 119° 118° 117° 116° WHAT DOES THE MAP SHOW? faults are defined as those that moved in the last 780,000 years. Faults active in the last 1993, Scotts Mills (near Silverton and Woodburn in Marion County, Oregon) earthquake Dougherty, M.L., and Trehu, A.M., 2002, Neogene deformation of the Mt. -
Tectonic Alteration of a Major Neogene River Drainage of the Basin and Range
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE Stuart D. Parker Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Tectonics and Structure Commons Let us know how access to this document benefits ou.y Recommended Citation Parker, Stuart D., "TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 10637. https://scholarworks.umt.edu/etd/10637 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE By STUART DOUGLAS PARKER Bachelor of Science, University of North Carolina-Asheville, Asheville, North Carolina, 2014 Thesis Presented in partial fulfillment of the requirements for the degree of Master of Science in Geology The University of Montana Missoula, MT May, 2016 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School James W. Sears, Committee Chair Department of Geosciences Rebecca Bendick Department of Geosciences Marc S. Hendrix Department of Geosciences Andrew Ware Department of Physics and Astronomy Parker, Stuart, M. S., May, 2016 Geology Tectonic alteration of a major Neogene river drainage of the Basin and Range Chairperson: James W. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
The Origin of the Columbia River Flood Basalt Province: Plume Versus Nonplume Models
The Origin of the Columbia River Flood Basalt Province: Plume versus Nonplume Models Peter R. Hooper1, Victor E. Camp2, Stephen P. Reidel3 and Martin E. Ross4 1 Dept of Geology, Washington State University, Pullman, WA 99164 and Open University, Milton Keynes, MK7 6AA, U.K. 2 Dept of Geological Sciences, San Diego State University, San Diego, CA 92182 3 Washington State University Tri-Cities, Richland, Washington 99352 4 Dept of Earth and Environmental Sciences, Northeastern University, 360 Huntington Av., Boston, MA 02115 ABSTRACT As a contribution to the plume-nonplume debate we review the tectonic setting in which huge volumes of monotonous tholeiite of the Columbia River flood basalt province of the Pacific Northwest, USA, were erupted. We record the time-scale and the locations of these eruptions, estimates of individual eruption volumes, and discuss the mechanisms of sheet- flow emplacement, all of which bear on the ultimate origin of the province. An exceptionally large chemical and isotopic data base is used to identify the various mantle sources of the basalt and their subsequent evolution in large lower crustal magma chambers. We conclude by discussing the available data in light of the various deep mantle plume and shallow mantle models recently advocated for the origin of this flood basalt province and we argue that the mantle plume model best explains such an exceptionally large volume of tholeiitic basalt erupted over an unusually short period and within such a restricted area. 1 INTRODUCTION Advocates of mantle plumes have long considered continental flood basalt provinces to be one of the most obvious expressions of plume activity (Campbell and Griffiths, 1990; Richards et al., 1989). -
Santa Fe National Historic Trail: Special History Study
Santa Fe National Historic Trail: Special History Study SANTE FE Special History Study COMERCIANTES, ARRIEROS, Y PEONES: THE HISPANOS AND THE SANTA FE TRADE (Merchants, Muleteers, and Peons) Special History Study Santa Fe National Historic Trail by Susan Calafate Boyle Southwest Cultural Resources Center Professional Papers No. 54 Division of History Southwest Region National Park Service 1994 TABLE OF CONTENTS safe/shs/index.htm Last Updated: 30-Sep-2005 http://www.nps.gov/history/history/online_books/safe/index.htm[7/2/2012 3:03:56 PM] Santa Fe National Historic Trail: Special History Study (Table of Contents) SANTA FE Special History Study TABLE OF CONTENTS COVER LIST OF FIGURES INTRODUCTION CHAPTER I - Isolation and Dependency CHAPTER II - Poverty and Neglect CHAPTER III - Going Down the Royal Road CHAPTER IV - Contraband and the Law CHAPTER V - New Mexican Merchants and Mercantile Capitalism CHAPTER VI - Felipe Chavez CHAPTER VII - Other Leading Merchant Families CONCLUSION RECOMMENDATIONS FOR FURTHER STUDY BIBLIOGRAPHY GLOSSARY APPENDIX I APPENDIX II APPENDIX III APPENDIX IV LIST OF ILLUSTRATIONS Figure 1. "Loading Up." J. Gregg marveled at the dexterity and skill with which hispanos harnessed and adjusted packs of merchandise Figure 2. The Santa Fe Trade: An International Trade Network Figure 3. The Santa Fe Trail: Part of an International Trade Network http://www.nps.gov/history/history/online_books/safe/shst.htm[7/2/2012 3:04:00 PM] Santa Fe National Historic Trail: Special History Study (Table of Contents) Figure 4. Pedro Vial pioneered a route that closely resembled the one Santa Fe Traders would follow in the next century Figure 5. -
Human Exploration of Mars Design Reference Architecture 5.0
July 2009 “We are all . children of this universe. Not just Earth, or Mars, or this System, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” — Ray Bradbury, 'Mars and the Mind of Man,' 1973 Cover Art: An artist’s concept depicting one of many potential Mars exploration strategies. In this approach, the strengths of combining a central habitat with small pressurized rovers that could extend the exploration range of the crew from the outpost are assessed. Rawlings 2007. NASA/SP–2009–566 Human Exploration of Mars Design Reference Architecture 5.0 Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 ACKNOWLEDGEMENTS The individuals listed in the appendix assisted in the generation of the concepts as well as the descriptions, images, and data described in this report. Specific contributions to this document were provided by Dave Beaty, Stan Borowski, Bob Cataldo, John Charles, Cassie Conley, Doug Craig, Bret Drake, John Elliot, Chad Edwards, Walt Engelund, Dean Eppler, Stewart Feldman, Jim Garvin, Steve Hoffman, Jeff Jones, Frank Jordan, Sheri Klug, Joel Levine, Jack Mulqueen, Gary Noreen, Hoppy Price, Shawn Quinn, Jerry Sanders, Jim Schier, Lisa Simonsen, George Tahu, and Abhi Tripathi. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ CONTENTS 1 Introduction ...................................................................................................................... -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
HELP from ABOVE Air Force Close Air
HELP FROM ABOVE Air Force Close Air Support of the Army 1946–1973 John Schlight AIR FORCE HISTORY AND MUSEUMS PROGRAM Washington, D. C. 2003 i Library of Congress Cataloging-in-Publication Data Schlight, John. Help from above : Air Force close air support of the Army 1946-1973 / John Schlight. p. cm. Includes bibliographical references and index. 1. Close air support--History--20th century. 2. United States. Air Force--History--20th century. 3. United States. Army--Aviation--History--20th century. I. Title. UG703.S35 2003 358.4'142--dc22 2003020365 ii Foreword The issue of close air support by the United States Air Force in sup- port of, primarily, the United States Army has been fractious for years. Air commanders have clashed continually with ground leaders over the proper use of aircraft in the support of ground operations. This is perhaps not surprising given the very different outlooks of the two services on what constitutes prop- er air support. Often this has turned into a competition between the two serv- ices for resources to execute and control close air support operations. Although such differences extend well back to the initial use of the airplane as a military weapon, in this book the author looks at the period 1946- 1973, a period in which technological advances in the form of jet aircraft, weapons, communications, and other electronic equipment played significant roles. Doctrine, too, evolved and this very important subject is discussed in detail. Close air support remains a critical mission today and the lessons of yesterday should not be ignored. This book makes a notable contribution in seeing that it is not ignored. -
The Springfield Telescope Makers &
The Springfield Telescope Makers & The Hartness House Inn Present A Lunar Morphology Workshop Thursday, August 5, 2010 We are pleased to offer a pre-Stellafane workshop at the historic Hartness House Inn and Porter-Hartness Museum of Telescope Making located in Springfield, Vermont, cosponsored by the Antique Telescope Society. Proceeds will go towards the purchase of a replacement furnace for the Museum, which is run by volunteers from the Springfield Telescope Makers. This year we have added an evening banquet and after- dinner speaker, Professor Peter H. Schultz from Brown University. In addition to the evening lecture, workshop speakers include: Bert Willard Charles A. Wood Thomas A. Dobbins William P. Sheehan Ronald E. Doel Richard Evans and Peter H. Schultz Reservations for a room at the Hartness House Inn can be made by calling (802) 885- 2115 or on line at www.hartnesshouse.com. ******Register Now! Space is limited!****** Mail your registration to: Dan Lorraine, Lunar Morphology Workshop Registrar, 63 Cranberry Terrace, Cranston, RI 02921-3513 Name(s): ______________________________________________________________ Address: ______________________________________________________________ ______________________________________________________________________ email: ________________________________________________________________ Registration (each) $75.00 ______________ Evening Banquet $50.00 ____________ Please consider making a donation for the badly needed furnace: ____ $25 ____$50 ____$75 ____Other Total Enclosed: $__________________ ******Make checks payable to John W. Briggs***** [email protected] 1 Schedule and Preliminary Agenda Please also visit the Stellafane site for additional information: http://stellafane.org/convention/2010/2010-hartnesshouse.html Lunar Morphology Workshop, Thursday, August 5, 2010 Hartness House Inn, 30 Orchard Street, Springfield, Vermont, 05156; phone 802-885-2115 Note that registration includes coffee breaks and a buffet luncheon at Hartness House.