Origin of the Moon and Halilean Jupiter's Satellites Marakushev A.A

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Moon and Halilean Jupiter's Satellites Marakushev A.A Lunar and Planetary Science XXXI 1383.pdf Origin of the Moon and Halilean Jupiter’s Satellites Marakushev A.A. The Moon had its volcanic activity in the period of 4.6–3.2 Ga, and on Io, its analogy in the Jupiter’s system, volcanism continues now. Nevertheless, in spite of the age difference, the Moon regularly follows the row of Halilean Jupiter’s satellites by density (g/cm3) and unitless characteristic of the inner structure of satellites (Anderson et al., 1995; in parentheses): Io 3.53 (0.38) – the Moon 3.34 (0.39) – Europe 3.03 (0.34) – Ganymede 1.94 (0.31) – Callisto 1.8. The row of Halilean satellites is in the same regular correlation with the iron– silicate molten Jupiter’s core like the Moon with the Earth (figure). This correspondence was acquired on the stage of the Earth formation as a heavy molten core of the giant Protoearth surrounded by a satellite system in which the Moon occupied the same position as Io in the Jupiter’s system (Marakushev, 1999). After a loss of the fluid envelope, iron–silicate core of the Protoearth turned into a planet in its own right (Earth). As this took place, the satellite system of the Protoearth was also lost, and only the Moon retained. The analogy of the Moon with Halilean satellites reflects a giant size of the Protoearth and its comparison with Jupiter, because planets with moderate fluid envelopes (Saturn, Uranus, Neptune) were able to give rise only to light satellites with a density of less than 1.9 g/cm3. The formation of satellites was accompanied by an isolation of heavy cores of planets producing a quick rotation of their fluid envelopes (direct and reverse) and centrifugal forces. This was stimulated by liquid immiscibility. Judging by the density of separated satellites, essentially aqueous dense phases (H2– H2O) were separated and the outer icy satellites of group I with a reversed motion by orbits were formed at first (figure). Stabilization of normal rotation of Jupiter and separation of much dense satellites (II–III) reaching maximum values of its density (3.53 g/cm3) took place with the weightening of the core of the planet. Transition to the modern state resulted in the deceleration of rotation of Jupiter’s fluid envelope, and because of this, Jupiter could give rise only to light near-planetary satellites of group IV (figure) accompanied by the formation of a ring system. Lunar and Planetary Science XXXI 1383.pdf ORIGIN OF MOON AND HALILEAN JUPITER'S SATELLITES: A. A Marakushev Being separated from giant planetary envelopes as fluid–silicate molten mass, satellites are layered and consolidated from the periphery. This is accompanied by the increase of fluid pressure in their cores and leads to the development of their endogenic activity or explosive destruction giving rise to planetocentric meteorites. ,,, ,,, ,, $YHUDJH GHQVLW\ JFP ,9 , $YHUDJH GLVWDQFH IURP WKH SODQHW NP[ Figure. Diagram of distribution of density of the Moon and Jupiter’s satellites versus their distance from parent planets. 1 – Earth (density is recalculated for a pressure of zero); 2 – Moon; 3–20 – Jupiter (3), its iron–silicate molten core (4), and satellites (5 – Io, 6 – Europe, 7 – Ganymede, 8 – Callisto, 9 – Leda, 10 – Gimalia, 11 – Lisitea, 12 – Elara, 13 – Ananke, 14 – Karme, 15 – Pacife, 16 – Sinope, 17 – Adrastea, 18 – Metida, 19 – Teba, 20 – Amaltea. The direction of the Jupiter’s satellites rotation is indicated on the scheme of their orbits by arrows. I–IV – groups of satellites in the supposed sequence of their formation: I–II – distant satellites with reversed (I) and normal (II) rotation by orbits; III–IV – near-planetary massive satellites (III) and satellites of a low density surrounding the ring systems of planets (IV)..
Recommended publications
  • Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
    Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured.
    [Show full text]
  • The Effect of Jupiter\'S Mass Growth on Satellite Capture
    A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet.
    [Show full text]
  • Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D
    47th Lunar and Planetary Science Conference (2016) 2676.pdf Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D. Nesvorny3, 1Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia [email protected], 2SETI Institute, Mountain View, California, USA, 3Southwest Research Institute, Department of Space Studies, Boulder, CO. USA. Introduction: Surrounding Jupiter there are multi- Results: ple satellites, 67 known to-date. The most recent classi- fication system [1,2], based on orbital characteristics, uses the largest member of the group as the name and example. The closest group to Jupiter is the prograde Amalthea group, 4 small satellites embedded in a ring system. Moving outwards there are the famous Galilean moons, Io, Europa, Ganymede and Callisto, whose mass is similar to terrestrial planets. The final and largest group, is that of the outer Irregular satel- lites. Those irregulars that show a prograde orbit are closest to Jupiter and have previously been classified into three families [2], the Themisto, Carpo and Hi- malia groups. The remainder of the irregular satellites show a retrograde orbit, counter to Jupiter's rotation. Based on similarities in semi-major axis (a), inclination (i) and eccentricity (e) these satellites have been grouped into families [1,2]. In order outward from Jupiter they are: Ananke family (a 2.13x107 km ; i 148.9o; e 0.24); Carme family (a 2.34x107 km ; i 164.9o; e 0.25) and the Pasiphae family (a 2:36x107 km ; i 151.4o; e 0.41). There are some irregular satellites, recently discovered in 2003 [3], 2010 [4] and 2011[5], that have yet to be named or officially classified.
    [Show full text]
  • 02. Solar System (2001) 9/4/01 12:28 PM Page 2
    01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community.
    [Show full text]
  • Perfect Little Planet Educator's Guide
    Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet.
    [Show full text]
  • Elara-II User Manual Version 1.7 © August 2021 1 Manual FW HW Notes Date Version Version Version
    ELARA-II USER MANUAL 2613021137000 VERSION 1.7 AUGUST 26, 2021 *************** MUST READ Check for firmware updates Before using the product make sure you use the most recent firmware version, data sheet and user manual. This is especially important for Wireless Connectivity products that were not purchased directly from Würth Elektronik eiSos. A firmware update on these respective products may be required. We strongly recommend to include in the customer system design, the possibility for a firmware update of the product. Revision history Manual FW HW Notes Date version version version 1.0 1.0 1.0 • Initial release of the manual February 2020 • Updated power up description: 1.1 1.0 1.0 Figure 4, Table 25 April 2020 • Added information about light sensitivity: Chapter 2 • Corrected peak reflow 1.2 1.0 1.0 temperature: Chapter 12.2 May 2020 • Corrected version of harmonized norm EN 303 413 according to test reports: Chapter 16.5 • Added assembly information in 1.3 1.0 1.0 Chapter 7.1.5 June 2020 • Extended description of I2C host connection: Chapter 9.2 1.4 1.0 1.0 July 2020 • Added default UART baud rate to Table 33 • Added description of SPI host connection and interface: Chapter 8.3 and 9.3 • Updated Chapter 6 with recommendation for baud rate selection 1.5 1.0 1.0 October 2020 • Updated Chapter 5.4 with information about leap seconds • Corrected operating temperature in Table 30 • Added Chapter 7.3.1.2 Elara-II user manual version 1.7 © August 2021 www.we-online.com/wireless-connectivity 1 Manual FW HW Notes Date version version version
    [Show full text]
  • 385557Main Jupiter Facts1(2).Pdf
    Jupiter Ratio (Jupiter/Earth) Io Europa Ganymede Callisto Metis Mass 1.90 x 1027 kg 318 15 3 Adrastea Amalthea Thebe Themisto Leda Volume 1.43 x 10 km 1320 National Aeronautics and Space Administration Equatorial Radius 71,492 km 11.2 Himalia Lysithea63 ElaraMoons S/2000 and Counting! Carpo Gravity 24.8 m/s2 2.53 Jupiter Euporie Orthosie Euanthe Thyone Mneme Mean Density 1330 kg/m3 0.240 Harpalyke Hermippe Praxidike Thelxinoe Distance from Sun 7.79 x 108 km 5.20 Largest, Orbit Period 4333 days 11.9 Helike Iocaste Ananke Eurydome Arche Orbit Velocity 13.1 km/sec 0.439 Autonoe Pasithee Chaldene Kale Isonoe Orbit Eccentricity 0.049 2.93 Fastest,Aitne Erinome Taygete Carme Sponde Orbit Inclination 1.3 degrees Kalyke Pasiphae Eukelade Megaclite Length of Day 9.93 hours 0.414 Strongest Axial Tilt 3.13 degrees 0.133 Sinope Hegemone Aoede Kallichore Callirrhoe Cyllene Kore S/2003 J2 • Composition: Almost 90% hydrogen, 10% helium, small amounts S/2003of ammonia, J3methane, S/2003 ethane andJ4 water S/2003 J5 • Jupiter is the largest planet in the solar system, in fact all the otherS/2003 planets J9combined S/2003 are not J10 as large S/2003 as Jupiter J12 S/2003 J15 S/2003 J16 S/2003 J17 • Jupiter spins faster than any other planet, taking less thanS/2003 10 hours J18 to rotate S/2003 once, which J19 causes S/2003 the planet J23 to be flattened by 6.5% relative to a perfect sphere • Jupiter has the strongest planetary magnetic field in the solar system, if we could see it from Earth it would be the biggest object in the sky • The Great Red Spot,
    [Show full text]
  • Astrophysics on the Orbits of the Outer Satellites of Jupiter
    A&A 401, 763–772 (2003) Astronomy DOI: 10.1051/0004-6361:20030174 & c ESO 2003 Astrophysics On the orbits of the outer satellites of Jupiter T. Yokoyama1,M.T.Santos1,G.Cardin1, and O. C. Winter2 1 Universidade Estadual Paulista, IGCE - DEMAC Caixa Postal 178, CEP 13.500-970 Rio Claro (S˜ao Paulo), Brasil 2 Universidade Estadual Paulista, FEG, Grupo de Dinˆamica Orbital e Planetologia da UNESP, Caixa Postal 205, CEP 12.516-410 Guaratinguet´a(S˜ao Paulo), Brasil e-mail: [email protected] Received 11 September 2002 / Accepted 31 January 2003 Abstract. In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters $ $J . Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions,− so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter’s mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking $ $ in temporary − J libration. Key words. planets and satellites: general – solar system: general 1. Introduction Within the last two years a significant number of irregu- lar Jupiter satellites has been discovered (Sheppard & Jewitt The recent discovery of outer and irregular satellites of Uranus 2002).
    [Show full text]
  • Space Theme Circle Time Ideas
    Space Crescent Black Space: Sub-themes Week 1: Black/Crescent EVERYWHERE! Introduction to the Milky Way/Parts of the Solar System(8 Planets, 1 dwarf planet and sun) Week 2: Continue with Planets Sun and Moon Week 3: Comets/asteroids/meteors/stars Week 4: Space travel/Exploration/Astronaut Week 5: Review Cooking Week 1: Cucumber Sandwiches Week 2: Alien Playdough Week 3: Sunshine Shake Week 4: Moon Sand Week 5: Rocket Shaped Snack Cucumber Sandwich Ingredients 1 carton (8 ounces) spreadable cream cheese 2 teaspoons ranch salad dressing mix (dry one) 12 slices mini bread 2 to 3 medium cucumbers, sliced, thinly Let the children take turns mixing the cream cheese and ranch salad dressing mix. The children can also assemble their own sandwiches. They can spread the mixture themselves on their bread with a spoon and can put the cucumbers on themselves. Sunshine Shakes Ingredients and items needed: blender; 6 ounce can of unsweetened frozen orange juice concentrate, 3/4 cup of milk, 3/4 cup of water, 1 teaspoon of vanilla and 6 ice cubes. Children should help you put the items in the blender. You blend it up and yum! Moon Sand Materials Needed: 6 cups play sand (you can purchased colored play sand as well!); 3 cups cornstarch; 1 1/2 cups of cold water. -Have the children help scoop the corn starch and water into the table and mix until smooth. -Add sand gradually. This is very pliable sand and fun! -Be sure to store in an airtight container when not in use. If it dries, ad a few tablespoons of water and mix it in.
    [Show full text]
  • Irregular Satellites of the Giant Planets 411
    Nicholson et al.: Irregular Satellites of the Giant Planets 411 Irregular Satellites of the Giant Planets Philip D. Nicholson Cornell University Matija Cuk University of British Columbia Scott S. Sheppard Carnegie Institution of Washington David Nesvorný Southwest Research Institute Torrence V. Johnson Jet Propulsion Laboratory The irregular satellites of the outer planets, whose population now numbers over 100, are likely to have been captured from heliocentric orbit during the early period of solar system history. They may thus constitute an intact sample of the planetesimals that accreted to form the cores of the jovian planets. Ranging in diameter from ~2 km to over 300 km, these bodies overlap the lower end of the presently known population of transneptunian objects (TNOs). Their size distributions, however, appear to be significantly shallower than that of TNOs of comparable size, suggesting either collisional evolution or a size-dependent capture probability. Several tight orbital groupings at Jupiter, supported by similarities in color, attest to a common origin followed by collisional disruption, akin to that of asteroid families. But with the limited data available to date, this does not appear to be the case at Uranus or Neptune, while the situa- tion at Saturn is unclear. Very limited spectral evidence suggests an origin of the jovian irregu- lars in the outer asteroid belt, but Saturn’s Phoebe and Neptune’s Nereid have surfaces domi- nated by water ice, suggesting an outer solar system origin. The short-term dynamics of many of the irregular satellites are dominated by large-amplitude coupled oscillations in eccentricity and inclination and offer several novel features, including secular resonances.
    [Show full text]
  • HST Phase II Proposal Instructions for Cycle 19
    Phase II Instructions 19.0 June 2011 HST Phase II Proposal Instructions for Cycle 19 Operations and Data Management Division 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration Revision History Version Type Date Editor 19.0 GO June 2011 J. Younger and S. Rose See Changes Since the Previous Cycle 18.1 GO Feb 2011 J. Younger 18.0 GO June 2010 J Younger and S Rose: Cycle 18 Initial release This version is issued in coordination with the APT release and should be fully compliant with Cycle 19 APT. This is the General Observer version. If you would like some hints on how to read and use this document, see: Some Pointers in PDF and APT JavaHelp How to get help 1. Visit STScI’s Web site: http://www.stsci.edu/ where you will find resources for observing with HST and working with HST data. 2. Contact your Program Coordinator (PC) or Contact Scientist (CS) you have been assigned. These individuals were identified in the notification letter from STScI. 3. Send e-mail to [email protected], or call 1-800-544-8125. From outside the United States, call 1-410-338-1082. Table of Contents HST Phase II Proposal Instructions for Cycle 19 Part I: Phase II Proposal Writing ................................. 1 Chapter 1: About This Document .................... 3 1.1 Document Design and Structure ............................... 4 1.2 Changes Since the Previous Cycle .......................... 4 1.3 Document Presentation ............................................... 5 1.4 Technical Content ........................................................
    [Show full text]
  • MOONS of OUR SOLAR SYSTEM Last Updated June 8, 2017 Since
    MOONS OF OUR SOLAR SYSTEM last updated June 8, 2017 Since there are over 150 known moons in our solar system, all have been given names or designations. The problem of naming is compounded when space pictures are analyzed and new moons are discovered (or on rare occasions when spacecraft images of small, distant moons are found to be imaging flaws, and a moon is removed from the list). This is a list of the planets' known moons, with their names or other designations. If a planet has more than one moon, they are listed from the moon closest to the planet to the moon farthest from the planet. Since the naming systems overlap, many moons have more than one designation; in each case, the first identification listed is the official one. MERCURY and VENUS have no known moons. EARTH has one known moon. It has no official name. MARS has two known moons: Phobos and Deimos. ASTEROIDS (Small moons have now been found around several asteroids. In addition, a growing number of asteroids are now known to be binary, meaning two asteroids of about the same size orbiting each other. Whether there is a fundamental difference in these situations is uncertain.) JUPITER has 69 known moons. Names such as “S/2003 J2" are provisional. Metis (XVI), Adrastea (XV), Amalthea (V), Thebe (XIV), Io (I), Europa (II), Ganymede (III), Callisto (IV), Themisto (XVIII), Leda (XIII), Himalia (Hestia or VI), Lysithea (Demeter or X), Elara (Hera or VII), S/2000 J11, Carpo (XLVI), S/2003 J3, S/2003 J12, Euporie (XXXIV), S/2011 J1, S/2010 J2, S/2003 J18, S/2016 J1, Orthosie
    [Show full text]