Head Pose Determination from One Image Using a Generic Model

Total Page:16

File Type:pdf, Size:1020Kb

Head Pose Determination from One Image Using a Generic Model Head Pose Determination from One Image Using a Generic Model ; Ikuko Shimizu1;3 Zhengyou Zhang2 3 Shigeru Akamatsu3 Koichiro Deguchi1 1 Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bynkyo-ku, Tokyo 113, Japan 2 INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France 3 ATR HIP, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan e-mail: [email protected] Abstract use a generic model of the human head, which is applicable to many persons and is able to consider the variety of facial We present a new method for determining the pose of a expressions. Such a model is constructed from the results of human head from its 2D image. It does not use any arti®cial intensive measurements on the heads of many people. With markers put on a face. The basic idea is to use a generic model this 3D generic model, we suppose that an image of a head of a human head, which accounts for variation in shape and is the projection of this 3D generic model onto the image facial expression. Particularly, a set of 3D curves are used to plane. Then, the problem is to estimate this transformation, model the contours of eyes, lips, and eyebrows. A technique which is composed of the rigid displacement of the head and called Iterative Closest Curve matching (ICC) is proposed, a perspective projection. which aims at recovering the pose by iteratively minimizing We take a strategy that we de®ne edge curves on the 3D the distances between the projected model curves and their generic model in advance. For edge curves, we use the closest image curves. Because curves contain richer infor- contours of eyes, lips, eyebrows, and so on. They are caused mation (such as curvature and length) than points, ICC is by discontinuity of the re¯ectance and appear in the image both more robust and more ef®cient than the well-known iter- independent of the head pose in 3D space. (We call these ative closest point matching techniques (ICP). Furthermore, edges stable edges.) For each de®ned edge curve on the the image can be taken by a camera with unknown internal generic model, we search its corresponding curves in the parameters, which can be recovered by our technique thanks image. This is done by ®rst extracting every edge from the to the 3D model. Preliminary experiments show that the image and next using the relaxation method. proposed technique is promising and that an accurate pose After we have established the correspondences between estimate can be obtained from just one image with a generic the edges curves on the model and the edges in the image, head model. we are to estimate the head pose. For this purpose, we de- velop ICC (Iterative Closest Curve) method which minimizes the distance between the curves on the model and the corre- 1. Introduction sponding curves in the image. This ICC method is similar This paper deals with techniques for estimating the pose to the ICP (Iterative Closest Point) method [5] [8], which of a human head using its 2D image taken by a camera. They minimizes the distance from points of a 3D model to the cor- are useful for the realization of a new man-machine interface. responding measured points of the object. Because a curve We present a new method for the accurate estimation of a head contains much richer information than a point, curve corre- pose from only one 2D image using a 3D model of human spondences can be established more robustly and with less heads. By a 3D model with characteristic curves, our method ambiguity, and therefore, pose estimation based on curve cor- does not use any makers on the face and uses an arbitrary respondence is thought to be more accurate than that based camera with unknown parameters to take images. on point correspondence. Several methods have been proposed for head pose esti- The ICC method is an iterative algorithm and needs a mation which detect facial feature and estimate pose by loca- reasonable initial guess. To obtain it, prior to applying the tion of these features using 2D face model[1] or by template ICC method, we roughly compute the pose of a head and matching[3]. Jebara[7] tracked facial features in the sequence the camera parameters by using the correspondence of conics of images to generate 3D model of face and estimate pose of ®tted to the stable edges. The computation is analytically face. carried out. Then, a more precise pose are estimated by the We use 3D models of human heads in order to estimate a ICC method. In this step, in addition to the stable edges, we pose from only one 2D image. There are some dif®culties use variable edges, which are pieces of occluding contours with such 3D models; head shapes are different from one of a head, e.g. the contour of the face. person to another person and, furthermore, facial expressions Our method is currently applied for extracted face area may vary even for one person. Nevertheless, it is unrealistic from the natural image or the face image with unicolor back- to have 3D head models for all persons and for all possible ground. Many techniques have been reported in the literature facial expressions. To deal with effectively this problem, we to extract the face from clustered background. Construction of the Generic Mo del 2. Notation 3.1. t =X; Y ; Z The coordinates of a 3D point X in a world We represent the deformation of the 3D shape of a human t =u; v coordinate system and its image coordinates x are head (i.e., shape differences and the changes of the facial V [X ] related by expression) by the mean X and the variance of each point on the face. These variables are calculated from the X x Ä results of measuring heads of many people. To do so, we need =P ; = P X : or simplyx Ä 1 1 1 a method for sampling points consistently for all faces. That is, we need to know which point on a face corresponds to a P where is an arbitrary scale factor, is a 3 4 matrix, called point on another face. Many methods have been proposed for Ä t such a purpose and we can use them; we use the resampling =X; Y ; Z; the perspective projection matrix, and X 1 and t method [4] developed in our laboratory. This method uses =u; v ; P xÄ 1 . The matrix can be decomposed as several feature points (such as the corners of the eyes, the = AT : P (2) vertex of the nose, and so on) as reference points. Using these reference points, the shape of a face is segmented into The matrix A maps the coordinates of the 3D point to the several regions and further each region is resampled. We image coordinates. The general matrix A can be written as choose the sample points using this method. 0 1 3.2. Edge Extraction in the Mo del u o u 0 0 @ A v A = : o 0 v 0 (3) As mentioned earlier, we use two types of edges: stable 0010 edges and variable edges. For stable edges, we extract them beforehand from the 2D image taken at the same time as the v u and are the product of the focal length and the hori- acquisition of the 3D data of a head. They are the contours of u v o zontal and vertical scale factors, respectively. o and are the eyes, lips, and eyebrows. We obtain their corresponding the coordinates of the principal point of the camera, i.e., the curves on the head by back-projecting them onto the 3D intersection between the optical axis and the image plane. model. For variable edges, which are occluding contours and u v o For simplicity of computation, both o and are assumed depend on the head pose and camera parameters, we extract to be 0 in our case, because the principal point is usually at them whenever these parameters change. Figure 1 shows the center of the image. an example of images of the generic model with stable and The matrix T denotes the positional relationship between variable edges. It shows that the stable edges (i.e., the eyes the world coordinate system and the image coordinate system. and lips) do not change under the change of the pose, and the T can be written as variable edge (i.e., the contour of the face ) changes whenever the pose changes. R t T = : (4) 0 1 t R is a 3 3rotationmatrixand is a translation vector. Note that there are eight parameters to be estimated: two v camera parameters u and , three rotation parameters, and three translation parameters. I k = ;:::;K k We use C 1 to denote the -th stable curve k W P l = ;:::;L l in the image, and C 1 ,the -th stable curve l I W C C in the model projected by P .Both and are 2D curves. k l I Figure 1. A generic mo del of a head. In all p oses, C is used to denote the contour of the face in the image. o W the stable edges such as the eyes and lips do P P C is the contour of the face projected by . o I I k not change. The variable edges change b ecause k C x is the 2D the point belonging to the -th curve in k i W they are o ccluding contours.
Recommended publications
  • Global Human Mandibular Variation Reflects Differences in Agricultural
    Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies Noreen von Cramon-Taubadel1 Department of Anthropology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, United Kingdom Edited by Timothy D. Weaver, University of California, Davis, CA, and accepted by the Editorial Board October 19, 2011 (received for review August 12, 2011) Variation in the masticatory behavior of hunter-gatherer and has been found (14, 15) that global patterns of mandibular var- agricultural populations is hypothesized to be one of the major iation do not follow a model of neutral evolution. forces affecting the form of the human mandible. However, this If the null model of evolutionary neutrality can be rejected for has yet to be analyzed at a global level. Here, the relationship global patterns of human mandibular variation, alternative non- between global mandibular shape variation and subsistence eco- neutral hypotheses must be considered. One of the most obvious nomy is tested, while controlling for the potentially confounding alternative models is that agricultural populations will experience effects of shared population history, geography, and climate. The different biomechanical or selective pressures on mandibular results demonstrate that the mandible, in contrast to the cranium, shape than hunter-gatherers, such that modifications have occurred significantly reflects subsistence strategy rather than neutral either via phenotypic plasticity or natural selection. Previous genetic patterns, with hunter-gatherers having consistently longer morphometric studies (23, 24) found some geographical patterning and narrower mandibles than agriculturalists. These results sup- in mandibular morphology, as well as a signal of climatic and/or port notions that a decrease in masticatory stress among agricul- masticatory plasticity.
    [Show full text]
  • Standard Human Facial Proportions
    Name:_____________________________________________ Date:__________________Period: __________________ Standard Human Facial Proportions: The standard proportions for the human head can help you place facial features and find their orientation. The list below gives an idea of ideal proportions. • The eyes are halfway between the top of the head and the chin. • The face is divided into 3 parts from the hairline to the eyebrow, from the eyebrow to the bottom of the nose, and from the nose to the chin. • The bottom of the nose is halfway between the eyes and the chin. • The mouth is one third of the distance between the nose and the chin. • The distance between the eyes is equal to the width of one eye. • The face is about the width of five eyes and about the height of about seven eyes. • The base of the nose is about the width of the eye. • The mouth at rest is about the width of an eye. • The corners of the mouth line up with the centers of the eye. Their width is the distance between the pupils of the eye. • The top of the ears line up slightly above the eyes in line with the outer tips of the eyebrows. • The bottom of the ears line up with the bottom of the nose. • The width of the shoulders is equal to two head lengths. • The width of the neck is about ½ a head. Facial Feature Examples.docx Page 1 of 13 Name:_____________________________________________ Date:__________________Period: __________________ PROFILE FACIAL PROPORTIONS Facial Feature Examples.docx Page 2 of 13 Name:_____________________________________________ Date:__________________Period:
    [Show full text]
  • The Development of a Whole-Head Human Finite- Element Model for Simulation of the Transmission of Bone-Conducted Sound
    The development of a whole-head human finite- element model for simulation of the transmission of bone-conducted sound You Chang, Namkeun Kim and Stefan Stenfelt Journal Article N.B.: When citing this work, cite the original article. Original Publication: You Chang, Namkeun Kim and Stefan Stenfelt, The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound, Journal of the Acoustical Society of America, 2016. 140(3), pp.1635-1651. http://dx.doi.org/10.1121/1.4962443 Copyright: Acoustical Society of America / Nature Publishing Group http://acousticalsociety.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133011 The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound You Chang1), Namkeun Kim2), and Stefan Stenfelt1) 1) Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden 2) Division of Mechanical System Engineering, Incheon National University, Incheon, Korea Running title: whole-head finite-element model for bone conduction 1 Abstract A whole head finite element model for simulation of bone conducted (BC) sound transmission was developed. The geometry and structures were identified from cryosectional images of a female human head and 8 different components were included in the model: cerebrospinal fluid, brain, three layers of bone, soft tissue, eye and cartilage. The skull bone was modeled as a sandwich structure with an inner and outer layer of cortical bone and soft spongy bone (diploë) in between. The behavior of the finite element model was validated against experimental data of mechanical point impedance, vibration of the cochlear promontories, and transcranial BC sound transmission.
    [Show full text]
  • Comparison of Cadaveric Human Head Mass Properties: Mechanical Measurement Vs
    12 INJURY BIOMECHANICS RESEARCH Proceedings of the Thirty-First International Workshop Comparison of Cadaveric Human Head Mass Properties: Mechanical Measurement vs. Calculation from Medical Imaging C. Albery and J. J. Whitestone This paper has not been screened for accuracy nor refereed by any body of scientific peers and should not be referenced in the open literature. ABSTRACT In order to accurately simulate the dynamics of the head and neck in impact and acceleration environments, valid mass properties data for the human head must exist. The mechanical techniques used to measure the mass properties of segmented cadaveric and manikin heads cannot be used on live human subjects. Recent advancements in medical imaging allow for three-dimensional representation of all tissue components of the living and cadaveric human head that can be used to calculate mass properties. A comparison was conducted between the measured mass properties and those calculated from medical images for 15 human cadaveric heads in order to validate this new method. Specimens for this study included seven female and eight male, unembalmed human cadaveric heads (ages 16 to 97; mean = 59±22). Specimen weight, center of gravity (CG), and principal moments of inertia (MOI) were mechanically measured (Baughn et al., 1995, Self et al., 1992). These mass properties were also calculated from computerized tomography (CT) data. The CT scan data were segmented into three tissue types - brain, bone, and skin. Specific gravity was assigned to each tissue type based on values from the literature (Clauser et al., 1969). Through analysis of the binary volumetric data, the weight, CG, and MOIs were determined.
    [Show full text]
  • Adult Human Ocular Volume
    ogy: iol Cu ys r h re P n t & R y e s Anatomy & Physiology: Current m e o a t r a c n h Heymsfield et al., Anat Physiol 2016, 6:5 A Research ISSN: 2161-0940 DOI: 10.4172/2161-0940.1000239 Research Article Open Access Adult Human Ocular Volume: Scaling to Body Size and Composition Steven B Heymsfield1*, Cristina Gonzalez M2, Diana Thomas3, Kori Murray1, Guang Jia4, Erik Cattrysse5, Jan Pieter Clarys5,6 and Aldo Scafoglieri5 1Pennington Biomedical Research Center, Baton Rouge, LA, USA 2Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Brazil 3Department of Mathematical Sciences, Montclair State University, Montclair, NJ, USA 4Department of Medical Physics, Louisiana State University, Baton Rouge, USA 5Experimental Anatomy Research Department, Vrije Universiteit Brussel, Brussels, Belgium 6Radiology Department, University Hospital Brussels, Brussels, Belgium *Corresponding author: Steven B Heymsfield, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA, Tel: 225-763-2541; Fax: 225-763-0935; E-mail: [email protected] Received date: August 6, 2016; Accepted date: August 24, 2016; Published date: August 30, 2016 Copyright: © 2016 Heymsfield SB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objectives: Little is currently known on how human ocular volume (OV) relates to body size or composition across adult men and women. This gap was filled in an exploratory study on the path to developing anthropological and physiological models by measuring OV in young healthy adults and related brain, head, and body mass along with major body components.
    [Show full text]
  • Physical and Geometric Constraints Shape the Labyrinth-Like Nasal Cavity
    Physical and geometric constraints shape the labyrinth-like nasal cavity David Zwickera,b,1, Rodolfo Ostilla-Monico´ a,b, Daniel E. Liebermanc, and Michael P. Brennera,b aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; bKavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138; and cDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Leslie Greengard, New York University, New York, NY, and approved January 26, 2018 (received for review August 29, 2017) The nasal cavity is a vital component of the respiratory system take into account geometric constraints imposed by the shape that heats and humidifies inhaled air in all vertebrates. Despite of the head that determine the length of the nasal cavity, its this common function, the shapes of nasal cavities vary widely cross-sectional area, and, generally, the shape of the space that it across animals. To understand this variability, we here connect occupies. To tackle this complex problem, we first show that, nasal geometry to its function by theoretically studying the air- without geometric constraints, optimal shapes have slender flow and the associated scalar exchange that describes heating cross-sections. We then demonstrate that these shapes can be and humidification. We find that optimal geometries, which have compacted into the typical labyrinth-like shapes without much minimal resistance for a given exchange efficiency, have a con- loss in performance. stant gap width between their side walls, while their overall shape can adhere to the geometric constraints imposed by the Results head. Our theory explains the geometric variations of natural The Flow in the Nasal Cavity Is Laminar.
    [Show full text]
  • Arxiv:2106.12302V1 [Cs.CV] 23 Jun 2021
    3D human tongue reconstruction from single “in-the-wild” images Stylianos Ploumpis1;2 * Stylianos Moschoglou1;2 * Vasileios Triantafyllou2 Stefanos Zafeiriou1;2 1Imperial College London, UK 2Huawei Technologies Co. Ltd 1fs.ploumpis,s.moschoglou,[email protected] [email protected] Figure 1. We propose a framework that accurately derives the 3D tongue shape from single images. A high detailed 3D point cloud of the tongue surface and a full head topology along with the tongue expression can be estimated from the image domain. As we demonstrate, our framework is able to capture the tongue shape even in adverse “in-the-wild” conditions. Abstract dataset, consisting of 1; 800 raw scans of 700 individuals varying in gender, age, and ethnicity backgrounds *. As we 3D face reconstruction from a single image is a task demonstrate in an extensive series of quantitative as well that has garnered increased interest in the Computer Vision as qualitative experiments, our model proves to be robust community, especially due to its broad use in a number of and realistically captures the 3D tongue structure, even in applications such as realistic 3D avatar creation, pose in- adverse “in-the-wild” conditions. variant face recognition and face hallucination. Since the introduction of the 3D Morphable Model in the late 90’s, we witnessed an explosion of research aiming at particu- 1. Introduction larly tackling this task. Nevertheless, despite the increasing Recently, 3D face reconstruction from single “in-the- arXiv:2106.12302v1 [cs.CV] 23 Jun 2021 level of detail in the 3D face reconstructions from single wild” images has been a very active topic in Computer Vi- images mainly attributed to deep learning advances, finer sion with applications ranging from realistic 3D avatar cre- and highly deformable components of the face such as the ation to image imputation and face recognition [48, 17, 43, tongue are still absent from all 3D face models in the liter- 25, 41, 15].
    [Show full text]
  • Forensic Hair Comparisons
    Forensic Hair Comparisons Max M. Houck Director, Forensic Science Initiative, Research Office Manager, Forensic Business Research and Development, College of Business and Economics Specific questions • What is the state of the art? –I hope this presentation demonstrates the state of the art • Where is research conducted? –Little research is conducted in forensic hair examinations, except for mtDNA • Where is it published? –When conducted, it is published in peer review journals Basis of forensic hair microscopy •Comparative biology, including medicine and physical anthropology, has a long history of microscopic identification and comparison dating back to the 18th century. – Comparison is the cornerstone of the majority of biology, both past and present. •Microscopic techniques, combined with studied experience, provide for a discriminating means to examine and compare hair. •Literature in physical anthropology and forensic science detailing the differences between peoples’hair supports the credibility of the science Victim and Criminal only Victim and Criminal interact at a interact at a Crime Scene Crime Scene familiar to both unfamiliar to both Ex. Spouse kills co-habitating Ex. Sexual assault in an alley spouse Victim and Criminal interact Victim and Criminal interact at a Crime Scene familiar at a Crime Scene familiar only only to the Criminal to the Victim Victim Ex. Kidnapping and assault in Ex. Home invasion Criminal’s house Criminal Crime Scene What can be determined? • Is it a hair? • Is it human? • What area of the body is
    [Show full text]
  • A Three-Dimensional Measurement of Human Head ―For the Purpose of Dummyhead Construction
    J. Acoust, Soc. Jpn. (E) 4, 1 (1983) A three-dimensional measurement of human head ―For the purpose of dummyhead construction Kimitoshi Fukudome Department of Acoustic Design, Kyushu Institute of Design, 226, Shiobaru, Minami-ku, Fukuoka, 815 Japan (Received 22 May 1982) A method is presented of describing numerically the three dimensional shape of human head. By making use of the method the statistics on the head shape are obtained in 52 male young adult Japanese. Contours of the head are drawn by an apparatus whose principle of operation is similar to that of the perigraph used in the craniometry. After the contours and the positions of reference points are processed by a digital computer, the head shape is represented in the spherical coordinate system UA(R, Θ, Φ) as well as the rectangular Cartesian coordinate system U(X, Y, Z) where the origin is at the midpoint of the right-and-left tragions, X-axis is passing through the tragions, Y-axis is on the Frankfort horizontal, and Z-axis is perpendicular to both X-axis and Y-axis. The statistics on the radius R in the direction with polar angle Θ and azimuth Φ at intervals of six degrees are obtained: the average, standard deviation, maximum, and minimum are shown. Finally, a method of generating a model head which may be used in the dummyhead-headphone system is described. The shape of the model head is based on the statistical values obtained. PACS number: 43. 88. Md, 43. 88. Vk, 43. 66. Yw the listener having the same head shape as the dum- 1.
    [Show full text]
  • Bacteria Slides
    BACTERIA SLIDES Cocci Bacillus BACTERIA SLIDES _______________ __ BACTERIA SLIDES Spirilla BACTERIA SLIDES ___________________ _____ BACTERIA SLIDES Bacillus BACTERIA SLIDES ________________ _ LUNG SLIDE Bronchiole Lumen Alveolar Sac Alveoli Alveolar Duct LUNG SLIDE SAGITTAL SECTION OF HUMAN HEAD MODEL Superior Concha Auditory Tube Middle Concha Opening Inferior Concha Nasal Cavity Internal Nare External Nare Hard Palate Pharyngeal Oral Cavity Tonsils Tongue Nasopharynx Soft Palate Oropharynx Uvula Laryngopharynx Palatine Tonsils Lingual Tonsils Epiglottis False Vocal Cords True Vocal Cords Esophagus Thyroid Cartilage Trachea Cricoid Cartilage SAGITTAL SECTION OF HUMAN HEAD MODEL LARYNX MODEL Side View Anterior View Hyoid Bone Superior Horn Thyroid Cartilage Inferior Horn Thyroid Gland Cricoid Cartilage Trachea Tracheal Rings LARYNX MODEL Posterior View Epiglottis Hyoid Bone Vocal Cords Epiglottis Corniculate Cartilage Arytenoid Cartilage Cricoid Cartilage Thyroid Gland Parathyroid Glands LARYNX MODEL Side View Anterior View ____________ _ ____________ _______ ______________ _____ _____________ ____________________ _____ ______________ _____ _________ _________ ____________ _______ LARYNX MODEL Posterior View HUMAN HEART & LUNGS MODEL Larynx Tracheal Rings Found on the Trachea Left Superior Lobe Left Inferior Lobe Heart Right Superior Lobe Right Middle Lobe Right Inferior Lobe Diaphragm HUMAN HEART & LUNGS MODEL Hilum (curvature where blood vessels enter lungs) Carina Pulmonary Arteries (Blue) Pulmonary Veins (Red) Bronchioles Apex (points
    [Show full text]
  • Biomechanical Analysis of the Influence of a Cholesteatoma In
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Biomechanical analysis of the influence of a cholesteatoma in human hearing Maria Leonor Illa Mendonça DISSERTATION Integrated Master in Bioengeneering Supervisor: Carla Bibiana Monteiro França Santos | PhD Co-supervisors: Professor Maria Fernanda Gentil Costa Professor Marco Paulo Lages Parente June 28, 2020 c Maria Leonor Illa Mendonça, 2020 Biomechanical analysis of the influence of a cholesteatoma in human hearing Maria Leonor Illa Mendonça Integrated Master in Bioengeneering June 28, 2020 Resumo O sistema auditivo humano é um sistema complexo, com estruturas particulares qque possibilitam a audição. O ouvido médio, estudado em detalhe nesta tese, é formado por uma cavidade na qual existe uma cadeia ossicular articulada de modo a transferir mecanicamente as informações sono- ras desde a membrana timpânica até ao ouvido interno, onde a informação é codificada e enviadas para o cérebro, para interpretação. Além dos ossículos, músculos e ligamentos a eles conectados, há outra estrutura importante que atravessa o ouvido médio, o nervo da corda timpânica. Este nervo é uma ramificação do nervo facial, estando associado ao paladar e à produção de saliva. Es- ticar ou pressionar este nervo pode causar lesões permanentes nesta estrutura, levando a paralisia facial. Apesar de a sociedade ser inclusiva, as pessoas com paralisia facial podem sofrer alguns constrangimentos. As doenças do ouvido médio podem comprometer o funcionamento da corda do tímpano, ao esmagá-la, e a capacidade auditiva, reduzindo as vibrações da cadeia ossicular, o que resultará em menos informação a chegar ao ouvido interno. Uma dessas doenças é otite média. Se não for bem tratada, e caso dure mais de 3 meses, esta doença pode evoluir para um estado crónico, havendo maior probabilidade de desenvolvimento de um colesteatoma, uma massa benigna feita de detritos de pele.
    [Show full text]
  • Preservation of the Nerves to the Frontalis Muscle During Pterional Craniotomy
    LABORATORY INVESTIGATION J Neurosurg 122:1274–1282, 2015 Preservation of the nerves to the frontalis muscle during pterional craniotomy Tomas Poblete, MD, Xiaochun Jiang, MD, Noritaka Komune, MD, PhD, Ken Matsushima, MD, and Albert L. Rhoton Jr., MD Department of Neurological Surgery, University of Florida, Gainesville, Florida OBJECT There continues to be confusion over how best to preserve the branches of the facial nerve to the frontalis muscle when elevating a frontotemporal (pterional) scalp flap.The object of this study was to examine the full course of the branches of the facial nerve that must be preserved to maintain innervation of the frontalis muscle during elevation of a frontotemporal scalp flap. METHODS Dissection was performed to follow the temporal branches of facial nerves along their course in 5 adult, cadaveric heads (n = 10 extracranial facial nerves). RESULTS Preserving the nerves to the frontalis muscle requires an understanding of the course of the nerves in 3 areas. The first area is on the outer surface of the temporalis muscle lateral to the superior temporal line (STL) where the interfascial or subfascial approaches are applied, the second is in the area medial to the STL where subpericranial dis- section is needed, and the third is along the STL. Preserving the nerves crossing the STL requires an understanding of the complex fascial relationships at this line. It is important to preserve the nerves crossing the lateral and medial parts of the exposure, and the continuity of the nerves as they pass across the STL. Prior descriptions have focused largely on the area superficial to the temporalis muscle lateral to the STL.
    [Show full text]