Standard Human Facial Proportions

Total Page:16

File Type:pdf, Size:1020Kb

Standard Human Facial Proportions Name:_____________________________________________ Date:__________________Period: __________________ Standard Human Facial Proportions: The standard proportions for the human head can help you place facial features and find their orientation. The list below gives an idea of ideal proportions. • The eyes are halfway between the top of the head and the chin. • The face is divided into 3 parts from the hairline to the eyebrow, from the eyebrow to the bottom of the nose, and from the nose to the chin. • The bottom of the nose is halfway between the eyes and the chin. • The mouth is one third of the distance between the nose and the chin. • The distance between the eyes is equal to the width of one eye. • The face is about the width of five eyes and about the height of about seven eyes. • The base of the nose is about the width of the eye. • The mouth at rest is about the width of an eye. • The corners of the mouth line up with the centers of the eye. Their width is the distance between the pupils of the eye. • The top of the ears line up slightly above the eyes in line with the outer tips of the eyebrows. • The bottom of the ears line up with the bottom of the nose. • The width of the shoulders is equal to two head lengths. • The width of the neck is about ½ a head. Facial Feature Examples.docx Page 1 of 13 Name:_____________________________________________ Date:__________________Period: __________________ PROFILE FACIAL PROPORTIONS Facial Feature Examples.docx Page 2 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Head Positions Facial Feature Examples.docx Page 3 of 13 Name:_____________________________________________ Date:__________________Period: __________________ 3/4 View of the Face Facial Feature Examples.docx Page 4 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Front Facing Eyes EYES Profile Eyes 3/4 View Eyes Facial Feature Examples.docx Page 5 of 13 Name:_____________________________________________ Date:__________________Period: __________________ EARS In a 3/4 view, the head is turned slightly to one side and only 1 ear is shown. FRONT VIEW 3/4 View FRONT VIEW SIDE/PROFILE VIEW BACK VIEW Facial Feature Examples.docx Page 6 of 13 Name:_____________________________________________ Date:__________________Period: __________________ NOSES The noses to the right are front view. The noses below are example of profile or side views. Facial Feature Examples.docx Page 7 of 13 Name:_____________________________________________ Date:__________________Period: __________________ 3/4 VIEW SIDE/PROFILE VIEW MALE NOSES – FRONT & 3/4 VIEW FEMALE NOSES – FRONT & 3/4 VIEW Facial Feature Examples.docx Page 8 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Drawing Lips: Source - http://fc00.deviantart.com/fs39/i/2008/316/1/6/Tutorials__How_to_draw_lips_by_Cataclysm_X.jpg Facial Feature Examples.docx Page 9 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Facial Feature Examples.docx Page 10 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Features at Different Angles Facial Feature Examples.docx Page 11 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Mouth 3/4 View Facial Feature Examples.docx Page 12 of 13 Name:_____________________________________________ Date:__________________Period: __________________ Facial Feature Examples.docx Page 13 of 13 .
Recommended publications
  • Global Human Mandibular Variation Reflects Differences in Agricultural
    Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies Noreen von Cramon-Taubadel1 Department of Anthropology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, United Kingdom Edited by Timothy D. Weaver, University of California, Davis, CA, and accepted by the Editorial Board October 19, 2011 (received for review August 12, 2011) Variation in the masticatory behavior of hunter-gatherer and has been found (14, 15) that global patterns of mandibular var- agricultural populations is hypothesized to be one of the major iation do not follow a model of neutral evolution. forces affecting the form of the human mandible. However, this If the null model of evolutionary neutrality can be rejected for has yet to be analyzed at a global level. Here, the relationship global patterns of human mandibular variation, alternative non- between global mandibular shape variation and subsistence eco- neutral hypotheses must be considered. One of the most obvious nomy is tested, while controlling for the potentially confounding alternative models is that agricultural populations will experience effects of shared population history, geography, and climate. The different biomechanical or selective pressures on mandibular results demonstrate that the mandible, in contrast to the cranium, shape than hunter-gatherers, such that modifications have occurred significantly reflects subsistence strategy rather than neutral either via phenotypic plasticity or natural selection. Previous genetic patterns, with hunter-gatherers having consistently longer morphometric studies (23, 24) found some geographical patterning and narrower mandibles than agriculturalists. These results sup- in mandibular morphology, as well as a signal of climatic and/or port notions that a decrease in masticatory stress among agricul- masticatory plasticity.
    [Show full text]
  • The Evolutionary History of the Human Face
    This is a repository copy of The evolutionary history of the human face. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/145560/ Version: Accepted Version Article: Lacruz, Rodrigo S, Stringer, Chris B, Kimbel, William H et al. (5 more authors) (2019) The evolutionary history of the human face. Nature Ecology and Evolution. pp. 726-736. ISSN 2397-334X https://doi.org/10.1038/s41559-019-0865-7 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE EVOLUTIONARY HISTORY OF THE HUMAN FACE Rodrigo S. Lacruz1*, Chris B. Stringer2, William H. Kimbel3, Bernard Wood4, Katerina Harvati5, Paul O’Higgins6, Timothy G. Bromage7, Juan-Luis Arsuaga8 1* Department of Basic Science and Craniofacial Biology, New York University College of Dentistry; and NYCEP, New York, USA. 2 Department of Earth Sciences, Natural History Museum, London, UK 3 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.
    [Show full text]
  • Effects of Glans Penis Augmentation Using Hyaluronic Acid Gel for Premature Ejaculation
    International Journal of Impotence Research (2004) 16, 547–551 & 2004 Nature Publishing Group All rights reserved 0955-9930/04 $30.00 www.nature.com/ijir Effects of glans penis augmentation using hyaluronic acid gel for premature ejaculation JJ Kim1, TI Kwak1, BG Jeon1, J Cheon1 and DG Moon1* 1Department of Urology, Korea University College of Medicine, Sungbuk-ku, Seoul, Korea The main limitation of medical treatment for premature ejaculation is recurrence after withdrawal of medication. We evaluated the effect of glans penis augmentation using injectable hyaluronic acid (HA) gel for the treatment of premature ejaculation via blocking accessibility of tactile stimuli to nerve receptors. In 139 patients of premature ejaculation, dorsal neurectomy (Group I, n ¼ 25), dorsal neurectomy with glandular augmentation (Group II, n ¼ 49) and glandular augmentation (Group III, n ¼ 65) were carried out, respectively. Two branches of dorsal nerve preserving that of midline were cut at 2 cm proximal to coronal sulcus. For glandular augmentation, 2 cc of HA was injected into the glans penis, subcutaneously. At 6 months after each procedure, changes of glandular circumference were measured by tapeline in Groups II and III. In each groups, ejaculation time, patient’s satisfaction and partner’s satisfaction were also assessed. There was no significant difference in preoperative ejaculation time among three groups. Preoperative ejaculation times were 89.2740.29, 101.54759.42 and 96.5752.32 s in Groups I, II and III, respectively. Postoperative ejaculation times were significantly increased to 235.6758.6, 324.247107.58 and 281.9793.2 s in Groups I, II and III, respectively (Po0.01).
    [Show full text]
  • How to Create the Perfect Eyebrow
    Creating the Perfect Brows . As a make-up artist, I was acutely aware of the fact that my mother had a need that conventional cosmetics could not meet. She suffered from a type of alopecia (hair loss) of the eyebrows and lashes ever since I could remember. I would draw the eyebrows on for her, but it was often a painstaking process for her to draw the eyebrows on herself on a daily basis. After my mom described the embarrassment of swimming and having the pencil wash off her eyebrows, and another afternoon when a neighbor stopped by after she had been napping and one eyebrow was completely wiped off when she answered the door, it clearly was time for a solution. After completing my certification with the Academy of Micropigmentation, I had one of the most fulfilling days of my life, the day I was able to give a gift of eyebrows to my mother. This was a life changing experience for her and an incredible boost to her self-image. She went on to do her eyeliner, which was especially beneficial to her due to the absence of eyelashes, and I was able to give her lips a fuller appearance with the permanent lipliner. It is said that the facial feature models spend the most time on is their eyebrows and most women, at some point, have altered their eyebrows by tweezing, waxing or electrolysis. As women grow older, the hair on the outer half of their brows tend to become sparse or even non-existent. In ancient China, royalty were the only ones adorned with “tattooed” eyebrows.
    [Show full text]
  • Growth Hormone Deficiency Causing Micropenis:Peter A
    Growth Hormone Deficiency Causing Micropenis:Peter A. Lee, MD, PhD, a Tom Mazur, PsyD, Lessons b Christopher P. Houk, MD, Learned c Robert M. Blizzard, MD d From a Well-Adjusted Adultabstract This report of a 46, XY patient born with a micropenis consistent with etiology from isolated congenital growth hormone deficiency is used to (1) raise the question regarding what degree testicular testosterone exposure aDepartment of Pediatrics, College of Medicine, Penn State to the central nervous system during fetal life and early infancy has on the University, Hershey, Pennsylvania; bCenter for Psychosexual development of male gender identity, regardless of gender of rearing; (2) Health, Jacobs School of Medicine and Biomedical suggest the obligatory nature of timely full disclosure of medical history; Sciences, University at Buffalo and John R. Oishei Children’s Hospital, Buffalo, New York; cDepartment of (3) emphasize that virtually all 46, XY infants with functional testes and Pediatrics, Medical College of Georgia, Augusta University, a micropenis should be initially boys except some with partial androgen Augusta, Georgia; and dDepartment of Pediatrics, College of Medicine, University of Virginia, Charlottesville, Virginia insensitivity syndrome; and (4) highlight the sustaining value of a positive long-term relationship with a trusted physician (R.M.B.). When this infant Dr Lee reviewed and discussed the extensive medical records with Dr Blizzard, reviewed presented, it was commonly considered inappropriate to gender assign an pertinent medical literature, and wrote each draft infant male whose penis was so small that an adult size was expected to be of the manuscript with input from all coauthors; inadequate, even if the karyotype was 46, XY, and testes were functional.
    [Show full text]
  • Facial Image Comparison Feature List for Morphological Analysis
    Disclaimer: As a condition to the use of this document and the information contained herein, the Facial Identification Scientific Working Group (FISWG) requests notification by e-mail before or contemporaneously to the introduction of this document, or any portion thereof, as a marked exhibit offered for or moved into evidence in any judicial, administrative, legislative, or adjudicatory hearing or other proceeding (including discovery proceedings) in the United States or any foreign country. Such notification shall include: 1) the formal name of the proceeding, including docket number or similar identifier; 2) the name and location of the body conducting the hearing or proceeding; and 3) the name, mailing address (if available) and contact information of the party offering or moving the document into evidence. Subsequent to the use of this document in a formal proceeding, it is requested that FISWG be notified as to its use and the outcome of the proceeding. Notifications should be sent to: Redistribution Policy: FISWG grants permission for redistribution and use of all publicly posted documents created by FISWG, provided the following conditions are met: Redistributions of documents, or parts of documents, must retain the FISWG cover page containing the disclaimer. Neither the name of FISWG, nor the names of its contributors, may be used to endorse or promote products derived from its documents. Any reference or quote from a FISWG document must include the version number (or creation date) of the document and mention if the document is in a draft status. Version 2.0 2018.09.11 Facial Image Comparison Feature List for Morphological Analysis 1.
    [Show full text]
  • MR Imaging of Vaginal Morphology, Paravaginal Attachments and Ligaments
    MR imaging of vaginal morph:ingynious 05/06/15 10:09 Pagina 53 Original article MR imaging of vaginal morphology, paravaginal attachments and ligaments. Normal features VITTORIO PILONI Iniziativa Medica, Diagnostic Imaging Centre, Monselice (Padova), Italy Abstract: Aim: To define the MR appearance of the intact vaginal and paravaginal anatomy. Method: the pelvic MR examinations achieved with external coil of 25 nulliparous women (group A), mean age 31.3 range 28-35 years without pelvic floor dysfunctions, were compared with those of 8 women who had cesarean delivery (group B), mean age 34.1 range 31-40 years, for evidence of (a) vaginal morphology, length and axis inclination; (b) perineal body’s position with respect to the hymen plane; and (c) visibility of paravaginal attachments and lig- aments. Results: in both groups, axial MR images showed that the upper vagina had an horizontal, linear shape in over 91%; the middle vagi- na an H-shape or W-shape in 74% and 26%, respectively; and the lower vagina a U-shape in 82% of cases. Vaginal length, axis inclination and distance of perineal body to the hymen were not significantly different between the two groups (mean ± SD 77.3 ± 3.2 mm vs 74.3 ± 5.2 mm; 70.1 ± 4.8 degrees vs 74.04 ± 1.6 degrees; and +3.2 ± 2.4 mm vs + 2.4 ± 1.8 mm, in group A and B, respectively, P > 0.05). Overall, the lower third vaginal morphology was the less easily identifiable structure (visibility score, 2); the uterosacral ligaments and the parau- rethral ligaments were the most frequently depicted attachments (visibility score, 3 and 4, respectively); the distance of the perineal body to the hymen was the most consistent reference landmark (mean +3 mm, range -2 to + 5 mm, visibility score 4).
    [Show full text]
  • The Development of a Whole-Head Human Finite- Element Model for Simulation of the Transmission of Bone-Conducted Sound
    The development of a whole-head human finite- element model for simulation of the transmission of bone-conducted sound You Chang, Namkeun Kim and Stefan Stenfelt Journal Article N.B.: When citing this work, cite the original article. Original Publication: You Chang, Namkeun Kim and Stefan Stenfelt, The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound, Journal of the Acoustical Society of America, 2016. 140(3), pp.1635-1651. http://dx.doi.org/10.1121/1.4962443 Copyright: Acoustical Society of America / Nature Publishing Group http://acousticalsociety.org/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133011 The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound You Chang1), Namkeun Kim2), and Stefan Stenfelt1) 1) Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden 2) Division of Mechanical System Engineering, Incheon National University, Incheon, Korea Running title: whole-head finite-element model for bone conduction 1 Abstract A whole head finite element model for simulation of bone conducted (BC) sound transmission was developed. The geometry and structures were identified from cryosectional images of a female human head and 8 different components were included in the model: cerebrospinal fluid, brain, three layers of bone, soft tissue, eye and cartilage. The skull bone was modeled as a sandwich structure with an inner and outer layer of cortical bone and soft spongy bone (diploë) in between. The behavior of the finite element model was validated against experimental data of mechanical point impedance, vibration of the cochlear promontories, and transcranial BC sound transmission.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Comparison of Cadaveric Human Head Mass Properties: Mechanical Measurement Vs
    12 INJURY BIOMECHANICS RESEARCH Proceedings of the Thirty-First International Workshop Comparison of Cadaveric Human Head Mass Properties: Mechanical Measurement vs. Calculation from Medical Imaging C. Albery and J. J. Whitestone This paper has not been screened for accuracy nor refereed by any body of scientific peers and should not be referenced in the open literature. ABSTRACT In order to accurately simulate the dynamics of the head and neck in impact and acceleration environments, valid mass properties data for the human head must exist. The mechanical techniques used to measure the mass properties of segmented cadaveric and manikin heads cannot be used on live human subjects. Recent advancements in medical imaging allow for three-dimensional representation of all tissue components of the living and cadaveric human head that can be used to calculate mass properties. A comparison was conducted between the measured mass properties and those calculated from medical images for 15 human cadaveric heads in order to validate this new method. Specimens for this study included seven female and eight male, unembalmed human cadaveric heads (ages 16 to 97; mean = 59±22). Specimen weight, center of gravity (CG), and principal moments of inertia (MOI) were mechanically measured (Baughn et al., 1995, Self et al., 1992). These mass properties were also calculated from computerized tomography (CT) data. The CT scan data were segmented into three tissue types - brain, bone, and skin. Specific gravity was assigned to each tissue type based on values from the literature (Clauser et al., 1969). Through analysis of the binary volumetric data, the weight, CG, and MOIs were determined.
    [Show full text]
  • Adult Human Ocular Volume
    ogy: iol Cu ys r h re P n t & R y e s Anatomy & Physiology: Current m e o a t r a c n h Heymsfield et al., Anat Physiol 2016, 6:5 A Research ISSN: 2161-0940 DOI: 10.4172/2161-0940.1000239 Research Article Open Access Adult Human Ocular Volume: Scaling to Body Size and Composition Steven B Heymsfield1*, Cristina Gonzalez M2, Diana Thomas3, Kori Murray1, Guang Jia4, Erik Cattrysse5, Jan Pieter Clarys5,6 and Aldo Scafoglieri5 1Pennington Biomedical Research Center, Baton Rouge, LA, USA 2Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Brazil 3Department of Mathematical Sciences, Montclair State University, Montclair, NJ, USA 4Department of Medical Physics, Louisiana State University, Baton Rouge, USA 5Experimental Anatomy Research Department, Vrije Universiteit Brussel, Brussels, Belgium 6Radiology Department, University Hospital Brussels, Brussels, Belgium *Corresponding author: Steven B Heymsfield, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA, Tel: 225-763-2541; Fax: 225-763-0935; E-mail: [email protected] Received date: August 6, 2016; Accepted date: August 24, 2016; Published date: August 30, 2016 Copyright: © 2016 Heymsfield SB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objectives: Little is currently known on how human ocular volume (OV) relates to body size or composition across adult men and women. This gap was filled in an exploratory study on the path to developing anthropological and physiological models by measuring OV in young healthy adults and related brain, head, and body mass along with major body components.
    [Show full text]
  • Effects of Eye Position on Eigenface-Based Face Recognition Scoring Joe Marques Nicholas M
    Effects of Eye Position on Eigenface-Based Face Recognition Scoring Joe Marques Nicholas M. Orlans Alan T. Piszcz The MITRE Corporation The MITRE Corporation The MITRE Corporation 7515 Colshire Drive 7515 Colshire Drive 7515 Colshire Drive McLean, VA 22102 McLean, VA 22102 McLean, VA 22102 1.703.883.6337 1.703.883.7454 1.703.883.7124 [email protected] [email protected] [email protected] ABSTRACT successful template generation and proper matching or rejection Eigenface based facial recognition systems rely heavily on pre- of input faces. determined eye locations to properly orient the input face prior to template generation. Gross errors in the eye detection process can be identified by examining the reconstruction image of the resulting eigenspace representation. Subtle variation in the precision of eye finding that does not prevent subsequent enrollment has not been effectively studied or reported by the biometrics testing community. We quantify the impact of eye locations on face recognition match scores for identical subject images. The scores are analyzed to better understand the consequences and sensitivity of eye finding for more general applications when eye locations must be determined automatically. Figure 1 - Eye Position defined by a bounding box1 Categories and Subject Descriptors D.2.8 Metrics (performance metrics) Once eye locations are known, they are used as reference points General Terms to normalize the input image to some standardized scale and rotation. The center of the face is then masked to remove non- Measurement, Performance, Reliability, Experimentation, face regions such as the hair and neckline. Finally, the resulting Verification. image is projected into the multidimensional eigenspace[1] .
    [Show full text]