White Paper on the Future of Weather and Climate Forecasting

Total Page:16

File Type:pdf, Size:1020Kb

White Paper on the Future of Weather and Climate Forecasting WEATHER CLIMATE WATER Public-Private Engagement Publication No. 3 WMO Open Consultative Platform White Paper #1 Future of weather and climate forecasting WMO-No. 1263 Cover photo credits: © iStock © World Meteorological Organization, 2021 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix P.O. Box 2300 CH-1211 Geneva 2, Switzerland Tel.: +41 (0) 22 730 84 03 Fax: +41 (0) 22 730 81 17 Email: [email protected] ISBN 978-92-63-11263-7 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. WEATHER CLIMATE WATER Public-Private Engagement Publication No. 3 WMO Open Consultative Platform White Paper #1 Future of weather and climate forecasting WMO-No. 1263 i CONTENTS FOREWORD ......................................................................V ACKNOWLEDGEMENTS ............................................................1 1. INTRODUCTION ................................................................3 1.1 The need for a vision for climate forecasting and weather prediction .................3 1.2 Objective and scope of this White Paper .........................................4 2. WEATHER AND CLIMATE FORECASTING: SETTING THE SCENE ........................6 2.1 Brief history ................................................................6 2.2 WMO coordination role .......................................................7 2.3 Baseline 2020 .............................................................. 11 3. CHALLENGES AND OPPORTUNITIES IN THE COMING DECADE ........................12 3.1 Infrastructure for forecasting .................................................12 3.1.1 Observational ecosystem ...............................................13 3.1.2 High-performance computing ecosystem ..................................14 3.1.3 Changing landscape: advances in infrastructure through public–private engagement ..................................................15 3.2 Science and technology driving advancement of numerical prediction ..............16 3.2.1 Evolution of numerical Earth-system and weather-to-climate prediction ........17 3.2.2 High-resolution global ensembles ........................................19 3.2.3 Quality and diversity of models ..........................................19 3.2.4 Innovation through artificial intelligence and machine learning ...............19 3.2.5 Advancing together: leveraging through public–private engagement ...........20 ii 3.3 Operational forecasting: from global to local and urban prediction .................21 3.3.1 Computational challenges and cloud technology ...........................22 3.3.2 Verification and quality assurance ........................................23 3.3.3 Further automation of post-processing systems and the evolving role of human forecasters .......................................................24 3.3.4 Leveraging through public–private engagement ............................25 3.4 Acquiring value through weather and climate services ............................25 3.4.1 User perspective ......................................................26 3.4.2 Forecasts for decision support ...........................................26 3.4.3 Bridging between high-impact weather and climate services .................26 3.4.4 Education and training for future operational meteorologists/forecasters .......27 4. CONCLUSIONS. .28 4.1 Towards improved systems for forecasting: global, regional and local approaches .....28 4.2 Progressing together with developing countries .................................30 REFERENCES ....................................................................32 BIBLIOGRAPHY ..................................................................33 iii © iStock Amazing supercell in Colorado iv FOREWORD The advancement of our ability to predict This White Paper on the Future of Weather and Climate the weather and climate has been the core Forecasting is a collective endeavour of more than aspiration of a global community of scientists 30 lead scientists and experts to analyse trends, and practitioners, in the almost 150 years challenges and opportunities in a very dynamic of international cooperation in meteorology environment. The main purpose of the paper is to and related Earth system sciences. set directions and recommendations for scheduled progress, avoiding potential disruptions and leveraging The demand for weather and climate forecast opportunities through public–private engagement over information in support of critical decision-making the coming decade. This is done through description has grown rapidly during the last decade, and of three overarching components of the innovation will grow even faster in the coming years. Great cycle: infrastructure, research and development, and advances have been made in the utilization of operation. The paper presents the converging views of predictions in many areas of human activities. the contributors, but also accounts for some variations Nevertheless, further improvements in accuracy of those views in areas where different options exist for and precision, higher spatial and temporal advancing our capacity to predict weather and climate. resolution, and better description of uncertainty Thus, it informs and provides for intelligent choices are needed for realizing the full potential of based on local circumstances and resources. forecasts as enablers of a new level of weather- and climate-informed decision-making. I am pleased to present the White Paper on the Future of Weather and Climate Forecasting to the global audience and to encourage the use of its findings and In June 2019, WMO launched the Open Consultative recommendations by decision makers, practitioners and Platform (OCP), Partnership and Innovation for the scientists from all sectors of the weather and climate Next Generation of Weather and Climate Intelligence, enterprise. I would like to acknowledge, with much in recognition that the progress in weather and climate appreciation, the work done by Dr Gilbert Brunet, Chair services to the society will require a community-wide of the WMO Scientific Advisory Panel, as the lead author approach with participation of the stakeholders from and coordinator of the group of more than 30 prominent the public and private sectors, as well as academia and scientists and experts worldwide who contributed to the civil society. The OCP is expected to serve as a vehicle for paper. I would like also to express my sincere thanks to sustainable and constructive dialogue among sectors, all the contributing authors and reviewers for devoting to help articulate a common vision for the future of the their time and sharing their knowledge and foresight for weather and climate enterprise in the coming decade the benefit of the whole enterprise. and beyond. Undoubtedly, the 2020s will bring significant changes to the weather, climate and water community: on the one hand through rapid advancement of science and technology, and on the other hand through a swiftly Prof. Petteri Taalas changing landscape of stakeholders with evolving Secretary-General capabilities and roles. Such changes will affect the way weather and climate forecasts are produced and used. This is the reason the OCP selected the theme of “Forecasting and forecasters” as one of the “grand challenges” of the coming decade, which will require collective analytics to identify opportunities and risks and provide advice to planners and decision makers of relevant stakeholder organizations. v ACKNOWLEDGEMENTS This paper has been prepared by a drafting team led by Gilbert Brunet, Chief Scientist and Group Executive Science and Innovation, Bureau of Meteorology, Chair of the Science Advisory Panel, World Meteorological Organization. The team of contributing authors includes (in alphabetical order): Peter Bauer Deputy Director, Research Department, European Centre for Medium-Range Weather Forecasts Natacha Bernier Director, Meteorological Research Division, Environment and Climate Change Canada Veronique Bouchet Acting Director General, Canadian Centre for Meteorological and Environmental Prediction, Meteorological Service of Canada, Environment and Climate Change Canada Andy Brown Director of Research, European Centre for Medium-Range Weather Forecasts Antonio Busalacchi President, University Corporation for Atmospheric Research, USA Georgina Campbell Executive Director, ClimaCell.org; CSO and Co-Founder, ClimaCell & Rei Goffer Paul Davies Principal Fellow of Meteorology and Chief Meteorologist, Met Office,
Recommended publications
  • How the Ocean Affects Weather & Climate
    Ocean in Motion 6: How does the Ocean Change Weather and Climate? A. Overview 1. The Ocean in Motion -- Weather and Climate In this program we will tie together ideas from previous lectures on ocean circulation. The students will also learn about the similarities and interactions between the atmosphere and the ocean. 2. Contents of Packet Your packet contains the following activities: I. A Sea of Words B. Program Preparation 1. Focus Points OThe oceans and the atmosphere are closely linked 1. the sun heats the atmosphere as well as the oceans 2. water evaporates from the ocean into the atmosphere a. forms clouds and precipitation b. movement of any fluid (gas or liquid) due to heating creates convective currents OWeather and climate are two different things. 1. Winds a. Uneven heating and cooling of the atmosphere creates wind b. Global ocean surface current patterns are similar to global surface wind patterns c. wind patterns are analogous to ocean currents 2. Four seasons OAtmospheric motion 1. weather and air moves from high to low pressure areas 2. the earth's rotation also influences air and weather patterns 3. Atmospheric winds move surface ocean currents. ©1998 Project Oceanography Spring Series Ocean in Motion 1 C. Showtime 1. Broadcast Topics This broadcast will link into discussions on ocean and atmospheric circulation, wind patterns, and how climate and weather are two different things. a. Brief Review We know the modern reason for studying ocean circulation is because it is a major part of our climate. We talked about how the sun provides heat energy to the world, and how the ocean currents circulate because the water temperatures and densities vary.
    [Show full text]
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Curriculum Vitae ROBERT JEFFREY TRAPP Department of Atmospheric
    Curriculum Vitae ROBERT JEFFREY TRAPP Department of Atmospheric Sciences University of Illinois at Urbana-Champaign 105 S. Gregory Street Urbana, Illinois 61801 [email protected] EDUCATION The University of Oklahoma, Ph.D. in Meteorology, 1994 Dissertation: Numerical Simulation of the Genesis of Tornado-Like Vortices Principal Advisor: Prof. Brian H. Fiedler Texas A&M University, M.S. in Meteorology, 1989 Thesis: The Effects of Cloud Base Rotation on Microburst Dynamics-A Numerical Investigation Principal Advisor: Prof. P. Das University of Missouri-Columbia, B.S. in Agriculture/Atmospheric Science, 1985 APPOINTMENTS Professor, University of Illinois at Urbana-Champaign, Department of Atmospheric Sciences, August 2014-current. Professor, Department of Earth and Atmospheric Sciences, Purdue University, August 2010- July 2014. Associate Professor, Department of Earth and Atmospheric Sciences, Purdue University, August 2003-August 2010 Research Scientist, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, July 1996-July 2003 Visiting Scientist, National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, August 1998-December 2002 National Research Council Postdoctoral Research Fellow, at the National Severe Storms Laboratory, July 1994-June 1996 GRANTS AND FUNDING Principal Investigator, Modulation of convective-draft characteristics and subsequent tornado intensity by the environmental wind and thermodynamics within the Southeast U.S, NOAA, $287,529, 2017-2019 (pending formal approval by NOAA Grants Officer). Principal Investigator, Collaborative Research: Remote sensing of electrictrification, lightning, and mesoscale/microscale processes with adaptive ground observations during RELMPAGO, NSF-AGS, $636,947, 2017-2021. Co-Principal Investigator, Remote sensing of electrification, lightning, and mesoscale/microscale processes with adaptive ground observations (RELMPAGO), NSF-AGS, $23,940, 2016–2017.
    [Show full text]
  • Weather and Climate: Changing Human Exposures K
    CHAPTER 2 Weather and climate: changing human exposures K. L. Ebi,1 L. O. Mearns,2 B. Nyenzi3 Introduction Research on the potential health effects of weather, climate variability and climate change requires understanding of the exposure of interest. Although often the terms weather and climate are used interchangeably, they actually represent different parts of the same spectrum. Weather is the complex and continuously changing condition of the atmosphere usually considered on a time-scale from minutes to weeks. The atmospheric variables that characterize weather include temperature, precipitation, humidity, pressure, and wind speed and direction. Climate is the average state of the atmosphere, and the associated characteristics of the underlying land or water, in a particular region over a par- ticular time-scale, usually considered over multiple years. Climate variability is the variation around the average climate, including seasonal variations as well as large-scale variations in atmospheric and ocean circulation such as the El Niño/Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Climate change operates over decades or longer time-scales. Research on the health impacts of climate variability and change aims to increase understanding of the potential risks and to identify effective adaptation options. Understanding the potential health consequences of climate change requires the development of empirical knowledge in three areas (1): 1. historical analogue studies to estimate, for specified populations, the risks of climate-sensitive diseases (including understanding the mechanism of effect) and to forecast the potential health effects of comparable exposures either in different geographical regions or in the future; 2. studies seeking early evidence of changes, in either health risk indicators or health status, occurring in response to actual climate change; 3.
    [Show full text]
  • Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
    ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast.
    [Show full text]
  • Emulation of a Full Suite of Atmospheric Physics
    Emulation of a Full Suite of Atmospheric Physics Parameterizations in NCEP GFS using a Neural Network Alexei Belochitski1;2 and Vladimir Krasnopolsky2 1IMSG, 2NOAA/NWS/NCEP/EMC email: [email protected] 1 Introduction is captured by periodic functions of day and month, and variability of solar energy output is reflected in the solar constant. In addition to the full atmospheric state, NN receives full land-surface model (LSM) state to Machine learning (ML) can be used in parameterization development at least in two different ways: 1) as an capture impact of surface boundary conditions. All NN outputs are increments of dynamical core's prognostic emulation technique for accelerating calculation of parameterizations developed previously, and 2) for devel- variables that the original atmospheric physics package modifies. opment of new \empirical" parameterizations based on reanalysis/observed data or data simulated by high resolution models. An example of the former is the paper by Krasnopolsky et al. (2012) who have developed highly efficient neural network (NN) emulations of both long{ and short-wave radiation parameterizations for 4 Hybrid Coupling of Full Atmospheric Physics NN to GFS a high resolution state-of-the-art short{ to medium-range weather forecasting model. More recently, Gentine Full atmospheric physics NN only et al. (2018) have used a neural network to emulate 2D cloud resolving models (CRMs) embedded into columns updates the state of the atmo- of a \super-parameterized" general circulation model (GCM) in an aqua-planet configuration with prescribed sphere and does not update the invariant zonally symmetric SST, full diurnal cycle, and no annual cycle.
    [Show full text]
  • Tornado Safety Q & A
    TORNADO SAFETY Q & A The Prosper Fire Department Office of Emergency Management’s highest priority is ensuring the safety of all Prosper residents during a state of emergency. A tornado is one of the most violent storms that can rip through an area, striking quickly with little to no warning at all. Because the aftermath of a tornado can be devastating, preparing ahead of time is the best way to ensure you and your family’s safety. Please read the following questions about tornado safety, answered by Prosper Emergency Management Coordinator Kent Bauer. Q: During s evere weather, what does the Prosper Fire Department do? A: We monitor the weather alerts sent out by the National Weather Service. Because we are not meteorologists, we do not interpret any sort of storms or any sort of warnings. Instead, we pass along the information we receive from the National Weather Service to our residents through social media, storm sirens and Smart911 Rave weather warnings. Q: What does a Tornado Watch mean? A: Tornadoes are possible. Remain alert for approaching storms. Watch the sky and stay tuned to NOAA Weather Radio, commercial radio or television for information. Q: What does a Tornado Warning mean? A: A tornado has been sighted or indicated by weather radar and you need to take shelter immediately. Q: What is the reason for setting off the Outdoor Storm Sirens? A: To alert those who are outdoors that there is a tornado or another major storm event headed Prosper’s way, so seek shelter immediately. I f you are outside and you hear the sirens go off, do not call 9-1-1 to ask questions about the warning.
    [Show full text]
  • 6. Annual Review and Significant Events
    6. Annual Review and Significant Events January-April: wet in the tropics and WA, very hot in central to eastern Australia For northern Australia, the tropical wet season (October 2005 – April 2006) was the fifth wettest on record, with an average of 674 mm falling over the period. The monsoon trough was somewhat late in arriving over the Top End (mid-January as opposed to the average of late December), but once it had become established, widespread heavy rain featured for the next four months, except over the NT and Queensland in February. One particularly noteworthy event occurred towards the end of January when an intense low (central pressure near 990 hPa) on the monsoon trough, drifted slowly westward across the central NT generating large quantities of rain. A two-day deluge of 482 mm fell at Supplejack in the Tanami Desert (NT), resulting in major flooding over the Victoria River catchment. A large part of the central NT had its wettest January on record. Widespread areas of above average rain in WA were mainly due to the passages of several decaying tropical cyclones, and to a lesser extent southward incursions of tropical moisture interacting with mid-latitude systems. Severe tropical cyclone Clare crossed the Pilbara coast on 9t h January and then moved on a southerly track across the western fringes of WA as a rain depression. Significant flooding occurred around Lake Grace where 226 mm of rain fell in a 24-hour period from 12 t h to 13 t h January. Tropical cyclone Emma crossed the Pilbara coast on 28 th February and moved on a southerly track; very heavy rain fell in the headwaters of the Murchison River on 1s t March causing this river’s highest flood on record.
    [Show full text]
  • Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts
    Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts Issued: 15th May 2006 by Professor Mark Saunders and Dr Adam Lea Benfield Hazard Research Centre, UCL (University College London), UK. Summary ¢¡¤£¦¥¨§¨§¨© £¨¨ £¨£¨ ¨£"!$#%¨&('(¨)¨'*+%,¨-'(.¨&/%¨01¨.%'23'(%546¨7+£¨ ¤£¨ ¨£8!$#%¨&('(¨9&*¨¤7:¨&(&*'( ;¨.%'23'*%54=<3 ¢¡¤'*>.¨¤%¨%?@'(%¡9%¡£A:B¨#A-,£C3'(¨#/!$#%¨&('(¨ %,¨-¤'*.¨&%¨0D£¨¨E@¡'(.¡F¨&(&3¡¤¨7F)£&(,@£¨ ¨£"¨.%'23'(%54¨<G ¢¡£" ¢HIJ%£,.'(&(£K-,¨)¤¨)'(&*'(%54 :B¨,£.¨%¦:L¨M%¡¤£¥¨§¨§¨© N £¨¨O¡,@£7P£Q¨.£&*&(£%$R¤'*&(&(ST-,£7'(.%'( :,¨0VUW 4X¥¨§¨§¨©+%¡¨% !K#%¨&('*¨ )¨'( ¨7 &(¨7¤:¨&*&('( Y¨.%'Z3'(%54Y[¨#&(7 )£\.&*¨£\%Y£¨ ¨£<X ¢¡¤£] ¢H¤I 7¤£%£0^'*¤'*%'*.¦:B¨,£.¨%A¡,@£76 ¨¨¨76R¤'*&(&_:B¨;)¤¨'(`¨.%'23'(%54a¨76:B¨¦&*¨¤7:¨&(&*'( M%,¨-'(.¨& %¨0b¤#0^)£_:,¨0bUc 4d¥¨§¨§¨©¨< egf3hejilk m3n(opqsr=t k iu1vKn(wyxOze{r|vK}$ok ~3wk it nZ¨u1m¨ilhwh~¨tNw@pFwy¨u[upiOk¨st(f3h¨¨¨ ^"3wyt(ilpq(n*p~3 ilh,¨n(k ~;t*ilk m3n(opqwtNk iyuwhpwk ~9p~3¦p8gpq(n(¨pt n(k ~k¨t(f3hniwhpwk ~3pqm¨ilk 3p3n(q*n(wyt n(oAp~3¦¨ht hiunZ~3n(wyt n*o k ilhopwyt w>k i?t(f3n(w>potNn 3nZt*¨¤egf3hwh$k ilhopwyt w{@hilh$n*wwy3hKuk ~¨t(f3qZ95ilk ut*f3h$ t(f¦Wp9¨¨¨ "tNk"t*f3h t(f@hohu[3hi8¨¨¨ p~3nZ~3oqZ3¨hKwhm3pilptNhTm¨ilh¨n(otNn(k ~3wsk i{~¨¨u3hilwsk¨¤t*ilk m3n(opqwyt k iuw~¨¨u[3hilw k¨¢wh¤hilh t(ilk m3n(opq¡oC3oq(k ~3hw"p~3¢t(f3h A£E¤¥z5@oo¨u3q(ptNh^£E3oq*k ~3h¦¤¡~3hi 3}snZ~3¨h§3egf3h[q*pt(tNhiKn(w ¨n ¤h~dk i¨t*f3h/"f3k¨q(h/"3wyt(ilpq*n(p~35ilh ¨n(k ~3 Features of the 2005/6 Australian-Region Season • The 2005/6 Australian-region tropical storm season featured 11 storms of which 7 made severe tropical cyclone strength (U.S.
    [Show full text]
  • High Resolution Nwp Modelling of the Atmospheric Conditions Across Vatnajökull (Iceland)
    HIGH RESOLUTION NWP MODELLING OF THE ATMOSPHERIC CONDITIONS ACROSS VATNAJÖKULL (ICELAND) Laura Rontu1, Friedrich Obleitner2, Sander Tijm3, Christoph Zingerle4, Stefan Gollvik5 1 Finnish Meteorological Institute, Helsinki, Finland 2 Institute of Meteorology and Geophysics, Innsbruck University, Austria 3 KNMI, De Bilt, the Netherlands 4 Central Institute for Meteorology and Geodynamics, Innsbruck, Austria 5 Swedish Meteorological and Hydrological Institute E-mail: Laura.Rontu@fmi.fi Abstract: We investigate the skill of an operational NWP model (HIRLAM) to reproduce the near-surface atmospheric conditions across the Vatnajökull Ice Sheet (Iceland). The study focuses on a mesoscale glaciometeorological observation campaign of summer 1996, which provided a wealth of meteorological and glaciological data. The modelling concept is based on nesting fine-scale (2.8km horizontal resolution) hydrostatic HIRLAM experiments into the downscaled ERA40 analyses. The results of a reference run are compared to a subset of observations following a height transect across Brei- damerkurjökull, a southern outlet glacier of Vatnajökull, which reveals some severe deficiencies regarding the treatment of the surface energy balance. Keywords: HIRLAM, parametrization, Vatnajökul Ice Cap, mass and energy balance 1. INTRODUCTION The role of the cryosphere in the global climate system has gained increased attention during the last decades. Thus, much effort has been devoted to enhanced geophysical monitoring of ice sheets and glaciers all over the world, to interpretation of paleoclimatic records or to modelling the interactions between ice masses and the atmosphere. The last decades have seen considerable progress in the understanding of the associated processes, which has been fostered by specific measurement and modelling efforts in different fields of research.
    [Show full text]
  • Article Is Available On- Backs Usually Related to Physical Parameterizations, Which Line At
    Geosci. Model Dev., 13, 1311–1333, 2020 https://doi.org/10.5194/gmd-13-1311-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales Danijel Belušic´1, Hylke de Vries2, Andreas Dobler3, Oskar Landgren3, Petter Lind1, David Lindstedt1, Rasmus A. Pedersen4, Juan Carlos Sánchez-Perrino5, Erika Toivonen6, Bert van Ulft2, Fuxing Wang1, Ulf Andrae1, Yurii Batrak3, Erik Kjellström1, Geert Lenderink2, Grigory Nikulin1, Joni-Pekka Pietikäinen6,a, Ernesto Rodríguez-Camino5, Patrick Samuelsson1, Erik van Meijgaard2, and Minchao Wu1 1Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden 2Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands 3Norwegian Meteorological Institute (MET Norway), Oslo, Norway 4Danish Meteorological Institute (DMI), Copenhagen, Denmark 5Agencia Estatal de Meteorología (AEMET), Madrid, Spain 6Finnish Meteorological Institute (FMI), Helsinki, Finland anow at: Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Germany Correspondence: Danijel Belušic´ ([email protected]) Received: 24 May 2019 – Discussion started: 15 July 2019 Revised: 12 February 2020 – Accepted: 19 February 2020 – Published: 20 March 2020 Abstract. This paper presents a new version of HCLIM, a HCLIM cycle has considerable differences in model setup regional climate modelling system based on the ALADIN– compared to the NWP version (primarily in the description HIRLAM numerical weather prediction (NWP) system. of the surface), it is planned for the next cycle release that the HCLIM uses atmospheric physics packages from three NWP two versions will use a very similar setup. This will ensure model configurations, HARMONIE–AROME, ALARO and a feasible and timely climate model development as well as ALADIN, which are designed for use at different horizon- updates in the future and provide an evaluation of long-term tal resolutions.
    [Show full text]
  • Article Is Part of the Special Issue “Air T., Savage, N., Seigneur, C., Sokhi, R
    Atmos. Chem. Phys., 21, 11099–11112, 2021 https://doi.org/10.5194/acp-21-11099-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Downscaling system for modeling of atmospheric composition on regional, urban and street scales Roman Nuterman1, Alexander Mahura2, Alexander Baklanov3,1, Bjarne Amstrup4, and Ashraf Zakey5 1Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark 2Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00560, Finland 3Science and Innovation Department, World Meteorological Organization, Geneva 2, 1211, Switzerland 4Research Department, Danish Meteorological Institute, Copenhagen, 2100, Denmark 5Egyptian Meteorological Authority, Cairo, 11784, Egypt Correspondence: Roman Nuterman ([email protected]) Received: 22 December 2020 – Discussion started: 6 January 2021 Revised: 16 June 2021 – Accepted: 17 June 2021 – Published: 22 July 2021 Abstract. In this study, the downscaling modeling chain for ments on environment, population, and decision making for prediction of weather and atmospheric composition is de- emergency preparedness and safety measures planning. scribed and evaluated against observations. The chain con- sists of interfacing models for forecasting at different spa- tiotemporal scales that run in a semi-operational mode. The forecasts were performed for European (EU) regional and 1 Introduction Danish (DK) subregional-urban scales by the offline coupled numerical weather prediction HIRLAM and atmospheric
    [Show full text]