Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography Adams, R. A. [AD] Sobolev Spaces. New York: Academic Press 1975. Agmon, S. [AG] Lectures on Elliptic Boundary Value Problems. Princeton, N. J.: Van Nostrand 1965. Agmon, S., A. Douglis, and L. Nirenberg [ADN I] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure App!. Math. 12, 623-727 (1959). [ADN 2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure App!. Math. 17,35-92 (1964). Aleksandrov, A. D. [AL I] Dirichlet's problem for the equation Det IIZul1 = 1/1. Vestnik Leningrad Univ. 13, no. I, 5-24 (1958) [Russian]. [AL 2] Certain estimates for the Dirichlet problem. Dok\. Akad. Nauk. SSSR 134, 1001-1004 (1960) [Russian]. English Translation in Soviet Math. Dok!. I, 1151-1154 (1960). [AL 3] Uniqueness conditions and estimates for the solution of the Dirichlet problem. Vestnik Leningrad Univ. 18, no. 3, 5-29 (\963) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 89-119 (1968). [AL 4] Majorization of solutions of second-order linear equations. Vestnik Leningrad Univ. 21, no. I, 5-25 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 120-143 (1968). [AL 5] Majorants of solutions and uniqueness conditions for elliptic equations. Vestnik Leningrad Univ. 21, no. 7, 5-20 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 144-161 (1968). [AL 6] The impossibility of general estimates for solutions and of uniqueness conditions for linear equations with norms weaker than in Ln. Vestnik Leningrad Univ. 21, no. 13,5-10 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68,162-168 (1968). Alkhutov, Yu. A. [AK] Regularity of boundary points relative to the Dirichlet problem for second order elliptic equations. Mat. Zametki 30, 333-342 (1981) [Russian]. English Translation in Math. Notes 30, 655-661 (1982). Allard, W. [AA] On the first variation of a varifold. Ann. of Math. (2) 95,417-491 (1972). Almgren, F. J. [AM] Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math. (2) 84, 277-292 (1966). Aubin, T. [AU I] Equations du type Monge-Ampere sur les varietes kiihleriennes compactes. C.R. Acad. Sci. Paris 283, 119-121 (1976). [AU 2] Problemes isoperimetriques et espaces de Sobolev. J. Differential Geometry 11, 573-598 (1976). [AU 3] Equations du type Monge-Ampere sur les varietes kilhli:riennes compactes. Bull. Sci. Math. 102, 63-95 (1978). [AU 4] Equations de Monge-Ampere reelles. J. Funct. Ana!. 41, 354-377 (1981). Bakel'man. I. Y A. [BA I] Generalized solutions of the Monge-Ampere equations. Dok\. Akad. Nauk. SSSR 114. 1143-1145 (1957) [Russian]. Bibliography 493 Brezis. H .• and L. C. Evans [BV] A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators. Arch. Rational Mech. Anal. 71, 1-13 (1979). Browder. F. E. [BW I] Strongly elliptic systems of differential equations. In: Contributions to the Theory of Partial Differential Equations. pp. 15-51. Princeton. N.J.: Princeton University Press 1954. [BW 2] On the regularity properties of solution of elliptic differential equations. Comm. Pure Appl. Math. 9, 351-361 (1956). [BW 3] Apriori estimates for solutions of elliptic boundary value problems, I, II, III. Neder. Akad. Wetensch. Indag. Math. 22, 149-159, 160-169 (1960), 23, 404-410 (1961). [BW 4] Problemes non-lineaires. Seminaire de Mathematiques Superieures, No. 15 (Ete. 1965). Montreal, Que.: Les Presses de I'Universite de Montreal 1966. [BW 5] Existence theorems for nonlinear partial differential equations. In : Proceedings of Symposia in Pure Mathematics. Volume XVI; pp. 1-60. Providence. R.I.: American Mathematical Society 1970. Caccioppoli. R. rCA I] Sulle equazioni ellittiche a derivate parziali con n variabili indipendenti. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 19. 83-89 (1934). rCA 2] Sulle equazioni ellittiche a derivate parziali con due variabili indipendenti. e sui problemi regoliui di ca1colo delle variazioni. I. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 22,305-310 (1935). rCA 3] Sulle equazioni ellittiche a derivate parziali con due variabili indipendenti. e sui problemi regolari di calcolo delle variazioni. II. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 22.376-379 (1935). rCA 4] Limitazioni integrali per Ie soluzioni di un'equazione lineare ellittica a derivate parziali. Giorn. Mat. Battaglini (4) 4 (80). 186-212 (1951). Caffarelli, L., L. Nirenberg, and 1. Spruck [CNS] The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampere equations. Comm. Pure Appl. Math. 37, 369-402 (1984). Caffarelli, L., 1. Kohn, L. Nirenberg, and 1. Spruck [CKNS] The Dirichlet problem for nonlinear second-order elliptic equations II. Comm. Pure Appl. Math. 38. 209-252 (1985). Calabi. E. [CL] Impropet affine hyperspheres of convex type and a generalization of a theorem by K. Jorgens. Michigan Math. J. S. 105-126 (1958). Calderon, A. P .. and A. Zygmund [CZ] On the existence of certain singular integrals. Acta Math. 88. 85-139 (1952). Campana to. S. [CM I] Proprietil di inc1usione per spazi di Morrey. Ricerche Mat. 12.67-86 (1963). [CM 2] Equazioni ellittiche del 11° ordine e spazi !l'12.}.,. Ann. Mat. Pura Appl. (4) 69.321-381 (\965). [CM 3] Sistemi ellittici in forma divergenza. Regolaritil all' interno. Quaderni della Scuola Norm. Sup. di Pisa (1980). Campanato, S., and G. Stampacchia [CS] Sulle maggiorazioni in LP nella teoria delle equazioni ellittiche. Boll. Un. Mat. Ital. (3) 20, 393- 399 (1965). Cheng, S. Y., and S. T. Yau [CY I] On the regularity of the Monge-Ampere equation det (02U/OXi ax) = F(x, u). Comm. Pure Appl. Math. 30, 41-68 (1977). [CY 2] On the regularity of the solution of the n-dimensional Minowski problem. Comm. Pure App\. Math. 19,495-516 (1976). [CY 3] On the existence of a complete Kahler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Comm. Pure App\. Math. 33, 507-544 (1980). [CY 4] The real Monge-Ampere equation and affine flat structures. Proc. 1980 Beijing Symposium on Differential Geometry and Differential Equations. Vol. I, 339-370 (1982). Editors, S. Chern, W. T. Wu. Chicco, M. [CI I] Principio di massimo forte per spttosoluzioni di equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ita\. (3) 22.368-372 (\967). 494 Bibliography [CI2] Semicontinuita delle sottosoluzioni di equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ital. (4) t. 548-553 (1968). [C1 3] Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ital. (4) 3. 384-394 (1970). [CI4] Solvability of the Dirichlet problem in H 2 . '(m for a class of linear second order elliptic partial differential equations. Boll. Un. Mat. Ital. (4)4.374-387 (1971). [CI5] Sulle equazioni ellittiche del secondo ordine a coefticienti continui. Ann. Mat. Pura Appl. (4) 88. 123-133 (1971). Cordes. H. O. [CO I] Ober die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131. 278-312 (1956). [CO 2] Zero order a priori estimates for solutions of elliptic differential equations. In: Proceedings of Symposia in Pure Mathematics. Volume IV. pp. 157-166. Providence. R.I.: American Mathematical Society 1961. Courant. R .. and D. Hilbert [CH] Methods of Mathematical Physics. Volumes I, II. New York: Interscience 1953, 1962. De Giorgi. E. [DG I] Sulla differenziabilitil e ranaliticita delle estremali degli integra.li multipli regolari. Mem. Accad. Sci. Torino CI. Sci. Fis. Mat. Natur. (3) 3,25-43 (1957). [DG 2] Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa (3) 19. 79-85 (1965). Delanoe, P. [DE I] Equations du type Monge-Ampere sur les varietes Riemanniennes compactes I. J. Funct. Anal. 40, 358-386 (1981). [DE 2] Equations du type Monge-Ampere sur les varietes Riemanniennes compactes II. J. Funct. Anal. 41. 341-353 (1981). Dieudonne, J. [01] Foundations of Modern Analysis. New York: Academic Press, 1960. Douglas, J .• T. Dupont, and J. Serrin [DDS] Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Rational Mech. Anal. 42.157-168 (1971). Douglis, A .• and L. Nirenberg [ON] Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8, 503-538 (1955). Dunford. N .. and J. T. Schwartz [OS] Linear Operators. Part I. New York: Interscience 1958. Edmunds. D. E. [ED] Quasilinear second order elliptic and parabolic equations. Bull. London Math. Soc. 2. 5-28 ( 1970). Edwards. R. E. [EW] Functional Analysis: Theory and Applications. New York: Holt, Rinehart and Winston 1965. Egorov. Yu. V .. and V. A. Kondrat'ev [EK] The oblique derivative problem. Mat. Sb. (N.S.) 78 (120). 148-176 (1969) [Russian]. English Translation in Math USSR Sb. 7. 139-169 (1969). Emmer, M. [EM] Esistenza, unicita e regolarita nelle superfice di equilibrio nei capillari. Ann. Univ. Ferrara 18. 79-94 (1973). Evans, L. C. [EV I] A convergence theorem for solutions of non-linear second order elliptic equations. Indiana University Math. J. 27, 875-887 (1978). [EV 2] Classical solutions of fully nonlinear. convex, second order elliptic equations. Comm. Pure Appl. Math. 25, 333-363 (\982). lEV 3) Classical solutions of the Hamilton-Jacobi Bellman equation for uniformly elliptic opera tors. Trans. Amer. Math. Soc. 275, 245-255 (1983). lEV 4] Some estimates for nondivergence structure, second order equations. Trans. Amer. Math. Soc. 287, 701-712 (1985). Evans, L. c., and A. Friedman [EF] Optimal stochastic switching and the Dirichlet problem for the Bellman equation. Trans. Amer. Math. Soc. 253. 365-389 (1979).