Global Existence for Quasilinear Diffusion Equations in Nondivergence Form
GLOBAL EXISTENCE FOR QUASILINEAR DIFFUSION EQUATIONS IN NONDIVERGENCE FORM WOLFGANG ARENDT AND RALPH CHILL A. We consider the quasilinear parabolic equation u β(t, x, u, u)∆u = f (t, x, u, u) t − ∇ ∇ in a cylindrical domain, together with initial-boundary conditions, where the quasilinearity operates on the diffusion coefficient of the Laplacian. Un- der suitable conditions we prove global existence of a solution in the energy space. Our proof depends on maximal regularity of a nonautonomous lin- ear parabolic equation which we use to provide us with compactness in order to apply Schaefer’s fixed point theorem. 1. I We prove global existence of a solution of the quasilinear diffusion prob- lem u β(t, x, u, u)∆u = f (t, x, u, u) in (0, ) Ω, t − ∇ ∇ ∞ × (1) u = 0 in (0, ) ∂Ω, ∞ × u(0, ) = u0( ) in Ω, · · where Ω Rd is an open set, u H1(Ω) and ⊂ 0 ∈ 0 1 β : (0, ) Ω R1+d [ε, ](ε (0, 1) is fixed) and ∞ × × → ε ∈ f : (0, ) Ω R1+d R ∞ × × → are measurable functions which are continuous with respect to the last vari- able, for every (t, x) (0, ) Ω. The function f satisfies in addition a linear growth condition with∈ respect∞ × to the last variable. We prove in fact existence of a solution in the space H1 ([0, ); L2(Ω)) L2 ([0, ); D(∆ )) C([0, ); H1(Ω)), loc ∞ ∩ loc ∞ D ∩ ∞ 0 2 where D(∆D) is the domain of the Dirichlet-Laplacian in L (Ω). Date: October 21, 2008. 2000 Mathematics Subject Classification. 35P05, 35J70, 35K65.
[Show full text]