1 Subharmonic Functions LTCC course on Potential Theory, Spring 2011 Boris Khoruzhenko1, QMUL This course follows closely a textbook on Potential Theory in the Complex Plane by Thomas Ransford, published by CUP in 1995. Five two-hour lectures will cover the following 1. Harmonic functions: basic properties, maximum principle, mean-value property, positive harmonic functions, Harnack's Theorem 2. Subharmonic functions: maximum principle, local integrability 3. Potentials, polar sets, equilibrium measures 4. Dirichlet problem, harmonic measure, Green's function 5. Capacity, transfinite diameter, Bernstein-Walsh Theorem 2 Harmonic Functions (Lecture notes for Day 1, 21 Feb 2011, revised 24 Feb 2011) 2.1 Harmonic and holomorphic functions Let D be domain (connected open set) in C. We shall consider complex- valued and real valued functions of z = x + iy 2 D. We shall write h(z) or often simply h to denote both a function of complex z and a function in two variables x and y. Notation: hx will be used to denote the partial derivative of h with respect to variable x, similarly hxx, hyy, hxy and hyx are the second order partial derivatives of f. Here come our main definition of the day. Recall that C2(D) denotes the space of functions on D with continuous second order derivatives. Definition A function h : D ! R is called harmonic on D if h 2 C2(D) and hxx + hyy = 0 on D. 1E-mail:
[email protected], URL: http://maths.qmul.ac.ukn ∼boris 1 Examples 2 2 2 (a) h(z) = jzj = x + y is not harmonic anywhere on C as hxx + hyy=2.