Bibliography

Bibliography

Bibliography Adams, R. A. [AD] Sobolev Spaces. New York: Academic Press 1975. Agmon, S. [AG] Lectures on Elliptic Boundary Value Problems. Princeton, N. J.: Van Nostrand 1965. Agmon, S., A. Douglis, and L. Nirenberg [ADN I] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure App!. Math. 12, 623-727 (1959). [ADN 2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure App!. Math. 17,35-92 (1964). Aleksandrov, A. D. [AL I] Dirichlet's problem for the equation Det IIZul1 = 1/1. Vestnik Leningrad Univ. 13, no. I, 5-24 (1958) [Russian]. [AL 2] Certain estimates for the Dirichlet problem. Dok\. Akad. Nauk. SSSR 134, 1001-1004 (1960) [Russian]. English Translation in Soviet Math. Dok!. I, 1151-1154 (1960). [AL 3] Uniqueness conditions and estimates for the solution of the Dirichlet problem. Vestnik Leningrad Univ. 18, no. 3, 5-29 (\963) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 89-119 (1968). [AL 4] Majorization of solutions of second-order linear equations. Vestnik Leningrad Univ. 21, no. I, 5-25 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 120-143 (1968). [AL 5] Majorants of solutions and uniqueness conditions for elliptic equations. Vestnik Leningrad Univ. 21, no. 7, 5-20 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68, 144-161 (1968). [AL 6] The impossibility of general estimates for solutions and of uniqueness conditions for linear equations with norms weaker than in Ln. Vestnik Leningrad Univ. 21, no. 13,5-10 (1966) [Russian]. English Translation in Amer. Math. Soc. Trans!. (2) 68,162-168 (1968). Alkhutov, Yu. A. [AK] Regularity of boundary points relative to the Dirichlet problem for second order elliptic equations. Mat. Zametki 30, 333-342 (1981) [Russian]. English Translation in Math. Notes 30, 655-661 (1982). Allard, W. [AA] On the first variation of a varifold. Ann. of Math. (2) 95,417-491 (1972). Almgren, F. J. [AM] Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math. (2) 84, 277-292 (1966). Aubin, T. [AU I] Equations du type Monge-Ampere sur les varietes kiihleriennes compactes. C.R. Acad. Sci. Paris 283, 119-121 (1976). [AU 2] Problemes isoperimetriques et espaces de Sobolev. J. Differential Geometry 11, 573-598 (1976). [AU 3] Equations du type Monge-Ampere sur les varietes kilhli:riennes compactes. Bull. Sci. Math. 102, 63-95 (1978). [AU 4] Equations de Monge-Ampere reelles. J. Funct. Ana!. 41, 354-377 (1981). Bakel'man. I. Y A. [BA I] Generalized solutions of the Monge-Ampere equations. Dok\. Akad. Nauk. SSSR 114. 1143-1145 (1957) [Russian]. Bibliography 493 Brezis. H .• and L. C. Evans [BV] A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators. Arch. Rational Mech. Anal. 71, 1-13 (1979). Browder. F. E. [BW I] Strongly elliptic systems of differential equations. In: Contributions to the Theory of Partial Differential Equations. pp. 15-51. Princeton. N.J.: Princeton University Press 1954. [BW 2] On the regularity properties of solution of elliptic differential equations. Comm. Pure Appl. Math. 9, 351-361 (1956). [BW 3] Apriori estimates for solutions of elliptic boundary value problems, I, II, III. Neder. Akad. Wetensch. Indag. Math. 22, 149-159, 160-169 (1960), 23, 404-410 (1961). [BW 4] Problemes non-lineaires. Seminaire de Mathematiques Superieures, No. 15 (Ete. 1965). Montreal, Que.: Les Presses de I'Universite de Montreal 1966. [BW 5] Existence theorems for nonlinear partial differential equations. In : Proceedings of Symposia in Pure Mathematics. Volume XVI; pp. 1-60. Providence. R.I.: American Mathematical Society 1970. Caccioppoli. R. rCA I] Sulle equazioni ellittiche a derivate parziali con n variabili indipendenti. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 19. 83-89 (1934). rCA 2] Sulle equazioni ellittiche a derivate parziali con due variabili indipendenti. e sui problemi regoliui di ca1colo delle variazioni. I. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 22,305-310 (1935). rCA 3] Sulle equazioni ellittiche a derivate parziali con due variabili indipendenti. e sui problemi regolari di calcolo delle variazioni. II. Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (6) 22.376-379 (1935). rCA 4] Limitazioni integrali per Ie soluzioni di un'equazione lineare ellittica a derivate parziali. Giorn. Mat. Battaglini (4) 4 (80). 186-212 (1951). Caffarelli, L., L. Nirenberg, and 1. Spruck [CNS] The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampere equations. Comm. Pure Appl. Math. 37, 369-402 (1984). Caffarelli, L., 1. Kohn, L. Nirenberg, and 1. Spruck [CKNS] The Dirichlet problem for nonlinear second-order elliptic equations II. Comm. Pure Appl. Math. 38. 209-252 (1985). Calabi. E. [CL] Impropet affine hyperspheres of convex type and a generalization of a theorem by K. Jorgens. Michigan Math. J. S. 105-126 (1958). Calderon, A. P .. and A. Zygmund [CZ] On the existence of certain singular integrals. Acta Math. 88. 85-139 (1952). Campana to. S. [CM I] Proprietil di inc1usione per spazi di Morrey. Ricerche Mat. 12.67-86 (1963). [CM 2] Equazioni ellittiche del 11° ordine e spazi !l'12.}.,. Ann. Mat. Pura Appl. (4) 69.321-381 (\965). [CM 3] Sistemi ellittici in forma divergenza. Regolaritil all' interno. Quaderni della Scuola Norm. Sup. di Pisa (1980). Campanato, S., and G. Stampacchia [CS] Sulle maggiorazioni in LP nella teoria delle equazioni ellittiche. Boll. Un. Mat. Ital. (3) 20, 393- 399 (1965). Cheng, S. Y., and S. T. Yau [CY I] On the regularity of the Monge-Ampere equation det (02U/OXi ax) = F(x, u). Comm. Pure Appl. Math. 30, 41-68 (1977). [CY 2] On the regularity of the solution of the n-dimensional Minowski problem. Comm. Pure App\. Math. 19,495-516 (1976). [CY 3] On the existence of a complete Kahler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Comm. Pure App\. Math. 33, 507-544 (1980). [CY 4] The real Monge-Ampere equation and affine flat structures. Proc. 1980 Beijing Symposium on Differential Geometry and Differential Equations. Vol. I, 339-370 (1982). Editors, S. Chern, W. T. Wu. Chicco, M. [CI I] Principio di massimo forte per spttosoluzioni di equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ita\. (3) 22.368-372 (\967). 494 Bibliography [CI2] Semicontinuita delle sottosoluzioni di equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ital. (4) t. 548-553 (1968). [C1 3] Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale. Boll. Un. Mat. Ital. (4) 3. 384-394 (1970). [CI4] Solvability of the Dirichlet problem in H 2 . '(m for a class of linear second order elliptic partial differential equations. Boll. Un. Mat. Ital. (4)4.374-387 (1971). [CI5] Sulle equazioni ellittiche del secondo ordine a coefticienti continui. Ann. Mat. Pura Appl. (4) 88. 123-133 (1971). Cordes. H. O. [CO I] Ober die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131. 278-312 (1956). [CO 2] Zero order a priori estimates for solutions of elliptic differential equations. In: Proceedings of Symposia in Pure Mathematics. Volume IV. pp. 157-166. Providence. R.I.: American Mathematical Society 1961. Courant. R .. and D. Hilbert [CH] Methods of Mathematical Physics. Volumes I, II. New York: Interscience 1953, 1962. De Giorgi. E. [DG I] Sulla differenziabilitil e ranaliticita delle estremali degli integra.li multipli regolari. Mem. Accad. Sci. Torino CI. Sci. Fis. Mat. Natur. (3) 3,25-43 (1957). [DG 2] Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa (3) 19. 79-85 (1965). Delanoe, P. [DE I] Equations du type Monge-Ampere sur les varietes Riemanniennes compactes I. J. Funct. Anal. 40, 358-386 (1981). [DE 2] Equations du type Monge-Ampere sur les varietes Riemanniennes compactes II. J. Funct. Anal. 41. 341-353 (1981). Dieudonne, J. [01] Foundations of Modern Analysis. New York: Academic Press, 1960. Douglas, J .• T. Dupont, and J. Serrin [DDS] Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Rational Mech. Anal. 42.157-168 (1971). Douglis, A .• and L. Nirenberg [ON] Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8, 503-538 (1955). Dunford. N .. and J. T. Schwartz [OS] Linear Operators. Part I. New York: Interscience 1958. Edmunds. D. E. [ED] Quasilinear second order elliptic and parabolic equations. Bull. London Math. Soc. 2. 5-28 ( 1970). Edwards. R. E. [EW] Functional Analysis: Theory and Applications. New York: Holt, Rinehart and Winston 1965. Egorov. Yu. V .. and V. A. Kondrat'ev [EK] The oblique derivative problem. Mat. Sb. (N.S.) 78 (120). 148-176 (1969) [Russian]. English Translation in Math USSR Sb. 7. 139-169 (1969). Emmer, M. [EM] Esistenza, unicita e regolarita nelle superfice di equilibrio nei capillari. Ann. Univ. Ferrara 18. 79-94 (1973). Evans, L. C. [EV I] A convergence theorem for solutions of non-linear second order elliptic equations. Indiana University Math. J. 27, 875-887 (1978). [EV 2] Classical solutions of fully nonlinear. convex, second order elliptic equations. Comm. Pure Appl. Math. 25, 333-363 (\982). lEV 3) Classical solutions of the Hamilton-Jacobi Bellman equation for uniformly elliptic opera­ tors. Trans. Amer. Math. Soc. 275, 245-255 (1983). lEV 4] Some estimates for nondivergence structure, second order equations. Trans. Amer. Math. Soc. 287, 701-712 (1985). Evans, L. c., and A. Friedman [EF] Optimal stochastic switching and the Dirichlet problem for the Bellman equation. Trans. Amer. Math. Soc. 253. 365-389 (1979).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us