Trophic Ecology of a Freshwater Sponge (Spongilla Lacustris) Revealed by Stable Isotope Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Ecology of a Freshwater Sponge (Spongilla Lacustris) Revealed by Stable Isotope Analysis See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257569577 Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis Article in Hydrobiologia · June 2013 DOI: 10.1007/s10750-013-1452-6 CITATIONS READS 7 238 2 authors, including: James Skelton University of Florida 41 PUBLICATIONS 258 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Metacommunity Ecology of Symbiosis View project Asia Ambrosia Beetle Fungi View project All content following this page was uploaded by James Skelton on 16 October 2016. The user has requested enhancement of the downloaded file. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis James Skelton & Mac Strand Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 709 Number 1 Hydrobiologia (2013) 709:227-235 DOI 10.1007/s10750-013-1452-6 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2013) 709:227–235 DOI 10.1007/s10750-013-1452-6 PRIMARY RESEARCH PAPER Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis James Skelton • Mac Strand Received: 11 March 2012 / Revised: 20 December 2012 / Accepted: 13 January 2013 / Published online: 25 January 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The vital roles that sponges play in marine spongillafly Climacia areolaris and the sponge-eating habitats are well-known. However, sponges inhabiting caddisfly Ceraclea resurgens suggesting that the freshwaters have been largely ignored despite having symbiosis between freshwater sponges and algae is widespread distributions and often high local abun- important to sponge predator trophic ecology. Our dances. We used natural abundance stable isotope results help define the role of sponges in freshwater signatures of carbon and nitrogen (d13C and d15N) to ecosystems and shed new light on the evolution and infer the primary food source of the cosmopolitan ecological consequences of a complex tri-trophic freshwater sponge Spongilla lacustris. Our results symbiosis involving freshwater sponges, zoochlorel- suggest that S. lacustris feed largely on pelagic lae, and spongivorous insects. resources and may therefore link pelagic and benthic food webs. A facultative association between Keywords Food webs Á Energy flow Á Symbiosis Á S. lacustris and endosymbiotic green algae caused Zoochlorellae Á Sisyridae Á Ceraclea Á Sponge S. lacustris to have significantly depleted carbon and predators nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbi- otic algae. Isotopic data from specialist sponge Introduction consumers demonstrated that sponges hosting zoo- chlorellae were the major component of the diet of the Sponges (Porifera) are a diverse and inextricable component of the colorful and structurally complex aquascapes of coral reefs and play vital roles in energy Handling editor: David J. Hoeinghaus flow, nutrient cycling, and community composition (Diaz & Ru¨tzler, 2001;Ru¨tzler, 2004; Becerro, 2008). & J. Skelton ( ) Á M. Strand Although most sponges are restricted to marine Department of Biology, Northern Michigan University, Marquette, MI 49855, USA habitats, more than 200 species occur in freshwater e-mail: [email protected] (Reiswig et al., 2010). Sponges live in lakes, ponds, M. Strand and streams world-wide (Reiswig et al., 2010) and e-mail: [email protected] they dominate some benthic communities (Jewell, 1936; Frost et al., 1982; Bailey et al., 1995). For Present Address: example, sponges cover 44% of the benthos of the J. Skelton Department of Biological Science, Virginia Tech largest lake in the world (Lake Baikal, Russia; Pile University, Blacksburg, VA 24061, USA et al., 1997) and contribute nearly half of the total 123 Author's personal copy 228 Hydrobiologia (2013) 709:227–235 benthic secondary production in parts of the River (Diptera:Chironomidae). The rarity of spongivory Thames, England (Mann et al., 1972). Despite their among benthic invertebrates is presumably the result widespread distribution, often high local abundance, of highly effective chemical and physical sponge and potentially substantial contribution to ecosystem defenses (Sata et al., 2002; Reiswig et al., 2010). dynamics, sponges have been largely overlooked by Consequently, spongivorous taxa display a range of ecologists studying freshwater systems. morphological and behavioral adaptations for con- In marine systems, sponges link benthic and pelagic suming freshwater sponges (Brown, 1952; Resh, 1976, food webs by filtering pelagically fixed carbon from Roque, 2004; b). For example, spongivorous caddis- the water column and converting it to biomass in the flies sequester the physical defenses of their prey by benthos (Lesser, 2006; Pile, 2006). Sponges in fresh- reinforcing their silken cases with sponge spicules water systems likely play a similar role, but this has (Fig. 1). not yet been evaluated. Although the types and sizes of Like marine sponges, many freshwater sponges particles that freshwater sponges are capable of benefit from a mixotrophic association with endocel- ingesting are well-known (Frost, 1980, Reiswig lular algae and can thus act as both primary producers et al., 1981, 2010), their diets in situ are virtually and consumers (Reiswig et al., 2010). In fact, for some unknown (Reiswig et al., 2010). The many gaps that freshwater sponges algae constitute more biomass remain in our knowledge, at least in part, stem from than animal tissues (Frost & Elias, 1985). Although the inherit difficulties of studying these organisms marine sponges host many types of photosymbionts, under natural conditions. In situ observations of freshwater sponges typically host only green algae trophic interactions are made impractical by the (zoochlorellae; but see Frost, 1997 for an exception). microscopic size of their food and an anatomical The presence of zoochlorellae gives freshwater preclusion of traditional gut content analyses. Stable sponges a distinctive green color (referred to hereafter isotope analyses of carbon and nitrogen offer a as ‘‘green sponges’’), whereas those without algal powerful tool for overcoming these difficulties and symbionts are typically white, off-white, or yellow gaining insight to sponge trophic interactions. In this (referred to hereafter as ‘‘white sponges’’). Sponges study, we used carbon and nitrogen isotope signatures that are green with zoochlorellae will quickly turn to assess the relative contributions of pelagic and white when shaded (Frost & Williamson, 1980)as benthic resources to the diet of the cosmopolitan zoochlorellae are digested by their host (Williamson, freshwater sponge, Spongilla lacustris Linnaeus. We 1979). Therefore, many populations of freshwater hypothesized that, like marine sponges, S. lacustris sponges contain both green and white individuals as a links pelagic and benthic communities by feeding extensively on pelagic phytoplankton. To assess our hypothesis, we compared the isotopic signatures of S. lacustris to pelagic and benthic baseline indicator species with well-known trophic ecology. We pre- dicted that heterotrophic S. lacustris have isotopic signatures similar to primary consumers that feed on pelagic phytoplankton. Freshwater sponges are inhabited by a wide variety of aquatic organisms including bacteria, algae, pro- tists, hydrozoans, nematodes, rotifers, insects, and crustaceans (Roback, 1968; Reiswig, 1971; Matteson & Jacobi, 1980; Gaino et al., 2004; Parfenova et al., 2008). The diverse group of organisms commonly associated with freshwater sponges includes a rela- tively small number of highly specialized sponge Fig. 1 Case of the sponge-eating caddisfly Ceraclea resurgens predators including caddisflies of the genus Ceraclea collected from Iron River near Big Bay, MI, viewed by light microscope. Case is composed of silk that has been reinforced (Trichoptera: Leptoceridae), all members of Sisyridae with megasclere spicules sequestered from Spongilla lacustris. (Neuroptera), and several chironomid midge species Scale bar 150 lm 123 Author's personal copy Hydrobiologia (2013) 709:227–235 229 result of spatial and/or temporal variation in light of granitic boulders and bedrock which were largely availability. covered by green S. lacustris during peak sponge The presence of zoochlorellae may have major abundance (August–October). The underside of boul- implications for specialist sponge predators. Results ders and cobbles, and other shaded areas were often from marine systems have demonstrated that the encased in yellowish-white, aposymbiotic sponges. endosymbiotic algae of sponges contribute largely to Net-spinning
Recommended publications
  • Indirect Effects of Overfishing on Caribbean Reefs: Sponges Overgrow Reef-Building Corals
    Indirect eVects of overfishing on Caribbean reefs: sponges overgrow reef-building corals Tse-Lynn Loh1,∗, Steven E. McMurray1, Timothy P. Henkel2, Jan Vicente3 and Joseph R. Pawlik1 1 Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA 2 Department of Biology, Valdosta State University, Valdosta, GA, USA 3 Institute of Marine and Environmental Technology, University of Maryland Center for Environ- mental Science, Baltimore, MD, USA ∗ Current aYliation: Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA ABSTRACT Consumer-mediated indirect eVects at the community level are diYcult to demonstrate empirically. Here, we show an explicit indirect eVect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge preda- tors. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Freshwater Sponges (Porifera: Spongillida) of Tennessee
    Freshwater Sponges (Porifera: Spongillida) of Tennessee Authors: John Copeland, Stan Kunigelis, Jesse Tussing, Tucker Jett, and Chase Rich Source: The American Midland Naturalist, 181(2) : 310-326 Published By: University of Notre Dame URL: https://doi.org/10.1674/0003-0031-181.2.310 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-American-Midland-Naturalist on 18 Sep 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by United States Fish & Wildlife Service National Conservation Training Center Am. Midl. Nat. (2019) 181:310–326 Notes and Discussion Piece Freshwater Sponges (Porifera: Spongillida) of Tennessee ABSTRACT.—Freshwater sponges (Porifera: Spongillida) are an understudied fauna. Many U.S. state and federal conservation agencies lack fundamental information such as species lists and distribution data. Such information is necessary for management of aquatic resources and maintaining biotic diversity.
    [Show full text]
  • Distribution Records of Spongilla Flies (Neur0ptera:Sisyridae)'
    DISTRIBUTION RECORDS OF SPONGILLA FLIES (NEUR0PTERA:SISYRIDAE)' Harley P. Brown2 Records of sisyrids are rather few and scattered. Parfin and Gurney (1 956) summarized those of the New World. Of six species of Sisyra S. panama was known from but two specimens from Panama, S. nocturna from but one partial specimen from British Honduras, and S. minuta from but one male from the lower Amazon near Santarkm, Par$ Brazil. Of eleven species of Climacia, C. striata was known from a single male from Panama, C. tenebra from a single female from Honduras, C. nota from a lone female from Venezuela, C. chilena from one female from southern Chile, C. carpenteri from two females from Paraguay, C. bimaculata from a female from British Guiana and one from Surinam, C. chapini from seven specimens from Texas and New Mexico, and C, basalis from fourteen females from one locality in British Guiana and one from a ship. C. townesi was known from 41 females taken by one man along the Amazon River between Iquitos, Peru and the vicinity of Santarhm, Brazil. To round out the records presented by Parfin and Gurney: Sisyra apicalis was known from Georgia, Florida, Cuba, and Panama; S. fuscata from British Columbia, Alaska, Ontario, Minnesota, Wisconsin, Michigan, New York, Massachusetts, and Maine; S. vicaria from the Pacific northwest and from most of the eastern half of the United States and southern Canada. Climacia areolaris also occurs in most of the eastern half of the United States and Canada. C. californica occurs in Oregon and northern California. ~ava/s(1928:319) listed C.
    [Show full text]
  • Generic Differences Among New World Spongilla-Fly Larvae and a Description of the Female of Climacia Stria Ta (Neuroptera: Sisyridae)*
    GENERIC DIFFERENCES AMONG NEW WORLD SPONGILLA-FLY LARVAE AND A DESCRIPTION OF THE FEMALE OF CLIMACIA STRIA TA (NEUROPTERA: SISYRIDAE)* BY RAYMOND J. PUPEDIS Biological Sciences Group University of Connecticut Storrs, CT 06268 INTRODUCTION While many entomologists are familiar, though probably uncom- fortable, with the knowledge that the Neuroptera contains numer- ous dusty demons within its membership (Wheeler, 1930), few realize that this condition is balanced by the presence of aquatic angels. This rather delightful and appropriate appellation was bestowed on a member of the family Sisyridae by Brown (1950) in a popular account of his discovery of a sisyrid species in Lake Erie. Aside from the promise of possible redemption for some neurop- terists, the spongilla-flies are an interesting study from any view- point. If one excludes, as many do, the Megaloptera from the order Neuroptera, only the family Sisyridae can be said to possess truly aquatic larvae. Despite the reported association of the immature stages of the Osmylidae and Neurorthidae with wet environments, members of those families seem not to be exclusively aquatic; however, much more work remains to be done, especially on the neurorthids. The Polystoechotidae, too, were once considered to have an aquatic larval stage, but little evidence supports this view (Balduf, 1939). Although the problem of evolutionary relationships among the neuropteran families has been studied many times, the phylogenetic position of the Sisyridae remains unclear (Tillyard, 1916; Withy- combe, 1925; Adams, 1958; MacLeod, 1964; Shepard, 1967; and Gaumont, 1976). Until fairly recently, the family was thought to have evolved from an osmylid-like ancestor (Tillyard, 1916; Withy- combe, 1925).
    [Show full text]
  • (Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
    Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca.
    [Show full text]
  • Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2005 Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight Richard Robert Ruzicka Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Ruzicka, Richard Robert, "Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight" (2005). Electronic Theses and Dissertations. 705. https://digitalcommons.georgiasouthern.edu/etd/705 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. SPONGE COMMUNITY STRUCTURE AND ANTI-PREDATOR DEFENSES ON TEMPERATES REEFS OF THE SOUTH ATLANTIC BIGHT by RICHARD ROBERT RUZICKA III Under the Direction of Daniel F. Gleason ABSTRACT The interaction between predation and anti-predator defenses of prey is important in shaping community structure in all ecosystems. This study examined the relationship between sponge predation and the distribution of sponge anti-predator defenses on temperate reefs in the South Atlantic Bight. Significant differences in the distribution of sponge species, sponge densities, and densities of sponge predators were documented across two adjacent reef habitats. Significant differences also occurred in the distribution of sponge chemical and structural defenses with chemical deterrence significantly greater in sponges associated with the habitat having higher predation intensity. Structural defenses, although effective in some instances, appear to be inadequate against spongivorous predators thereby restricting the distribution of sponge species lacking chemical defenses to habitats with lower predation intensity.
    [Show full text]
  • Spongilla Freshwater Sponge
    Spongilla Freshwater Sponge Genus: Spongilla Family: Spongillidae Order: Haposclerida Class: Demospongiae Phylum: Porifera Kingdom: Animalia Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. There are currently no USDA permits required for this organism. In order to protect our environment, never release a live laboratory organism into the wild. Please dispose of excess living material in a manner to prevent spread into the environment. Consult with your schools to identify their preferred methods of disposal. Primary Hazard Considerations Always wash your hands thoroughly after you handle your organism. Availability • Spongilla is a collected specimen. It is not easy to acquire in the winter, so shortages may occur between December and February. • Spongilla will arrive in pond water inside a plastic 8 oz. jar with a lid. Spongilla can live in its shipping container for about 2–4 days. Spongilla normally has a strong unpleasant odor, so this is not an indication of poor health. A good indicator of health is how well the spongilla retains its shape. Spongilla that is no longer living falls apart when manipulated. Captive Care Habitat: • Carefully remove the sponges, using forceps, and transfer them to an 8" x 3" Specimen Dish 17 W 0560 or to a shallow plastic tray containing about 2" of cold (10°–16 °C) spring water. Spongilla should be stored in the refrigerator. Keep them out of direct light, in semi-dark area, and aerate frequently. Frequent water changes (every 1–3 days), or a continual flow of water is recommended.
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
    Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started.
    [Show full text]
  • A Species of the Family Sisyridae (Insecta: Neuroptera) in New Zealand
    New Zealand Entomologist, 1998, Vol. 21 11 A species of the Family Sisyridae (Insecta: Neuroptera) in New Zealand K.A.J. WISE Auckland Museum, Private Bag 92018, Auckland ABSTRACT The Family Sisyridae (sponge-flies), genus Sisyra Burmeister, 1839 and the Australian species Sisyra rufistigma Tillyard, 1916 are recorded for the first time in New Zealand. The species is found to be established at one locality and is also recorded from two others. Keywords: Neuroptera, Sisyridae, Sisyra rufistigma, new record. INTRODUCTION In 1997, the Auckland Museum Entomologist, Mr John W. Early, collected a specimen of an unrecorded lacewing on the west coast near Auckland. Since then the author has collected the same species at two localities in North Auckland and this has now been recognised as being in the Family Sisyridae (Neuroptera). This family, commonly known as spongilla-flies or sponge-flies as the aquatic larvae are associated with freshwater sponges, has not been recorded previously in New Zealand. Males and females have been taken at one locality during the course of six weeks and the species would appear to be established. They were swept from overhanging foliage on both banks of a weir pond (Fig. 1) on the Kerikeri River. A search for immatures, by taking bottom and debris samples, has been unsuccessful. The system of wing venation nomenclature and the genitalia terminology used here follow those of Tjeder (1957). Fig. 1: Weir pond on the Kerikeri River, North Auckland. New Zeccland Entomologist, 1998, Vol. 21 SYSTEMATICS Family Sisyridae Antennae moniliform. Ocelli absent. Anterior wing with more than 3 simple costal cross-veins; Subcosta fused apically with Radius, or separate; one branched Radial sector from Radius; length to ca.
    [Show full text]
  • Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution. Michael Anthony Poirrier Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Poirrier, Michael Anthony, "Louisiana Freshwater Sponges: Taxonomy, Ecology and Distribution." (1969). LSU Historical Dissertations and Theses. 1683. https://digitalcommons.lsu.edu/gradschool_disstheses/1683 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9083 POIRMER, Michael Anthony, 1942- LOUISIANA FRESH-WATER SPONGES: TAXONOMY, ECOLOGY AND DISTRIBUTION. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This dissertation has been microfilmed exactly as received 70-9083 POIRRIER, Michael Anthony, 1942- LOUXSIANA FRESH-WATER SPONGES: TAXONOMY, ECOLOGY AND DISTRIBUTION. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms,
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]