Or 24, 6,374//W/AW7OA

Total Page:16

File Type:pdf, Size:1020Kb

Or 24, 6,374//W/AW7OA April 27, 1948. A. G. oBLAD 2440,414 PRODUCTION OF CYCLOHEXANE Filed Dec. 3, 1945 Alex G. Oelso/ or 24, 6,374//W/AW7OA Patented Apr. 27, 1948 2440414 UNITED STATES PATENT OFFICE PRODUCTION of CYCLOHEXANE Alex G. Oblad, Dallas, Tex, assignor, by mesne assignments, to Socony-Vacuum Oil Company, Incorporated, New York, N.Y., a corporation of New York Application December 3, 1945, Serial No. 632,546 4. Claims. (C. 260-667) 2 This invention relates to the manufacture of Cyclopentane which serves in the coordinated cyclohexane of high purity by the hydrogenation azeotropic distillation step as an agent for remov of benzene and more particularly to a novel. ing unconverted benzene from the cyclohexane process wherein benzene is catalytically hydro product. The methylcyclopentane-benzene aze genated at Only moderately high pressures to otrope is recycled to the hydrogenation reaction produce a substantially benzene-free cyclohexane Zone. I use an all hydrocarbon system in which product. the methylcyclopentane may be recycled from the In the preparation of cyclohexane by the hy distillation step through the hydrogenation zone drogenation of benzene it is difficult to hydro without adversely affecting the hydrogenation genate the benzene completely unless pressures O reaction therein, thus avoiding the loss of aze in excess of 2000 or 3000 pounds per Square inch . otropic agent incurred by the necessity of sepa are employed and unless the reactants are highly ration of recycle benzene therefrom. purified. Wery active cataylists which are rela Methylcyclopentane forms with benzene an tively sensitive to deactivation must be used to azeotrope which boils at 71.5 C, at atmospheric obtain complete conversion of benzene to cyclo 5 pressure, that is, about nine degrees centigrade hexane in a single pass. Hence, the more ad below the boiling point of benzene and of cyclo vantageous method of carrying out the hydro hexane. The composition of this azeotrope is genation has been to carry out the process by approximately 90 mole percent methylcyclopen taking a 90 to 95 percent conversion and sepa tane and 10 mole percent benzene. The composi rating unreacted benzene from the cyclohexane 20 tion of the azeotrope varies somewhat with the product by solvent extraction methods or by the pressure at which the distillation is carried out. use of an azeotropic agent in making this separa Thus, at about five pounds absolute pressure the tion by fractionation. Agents well known to the composition of the azeotrope is about 91 mole art are isopropyl alcohol, acetone, and methyl percent methylcyclopentane and 9 mole percent acetate. Solvents which may be used to separate 25 benzene while the azeotrope is richer with respect the benzene for recycle from the cyclohexane to benzene content at distillation pressures above product are liquid sulfur dioxide, furfural and atmospheric and may contain as much as 14 mole phenol. In general, the use of solvents has percent of benzene when the fractionation is proved to be unsatisfactory and not adaptable carried out at pressures of 100 to 150 pounds gage for continuous operation. Likewise, the use of 30 or about 12 mole percent benzene at preSSures of alcohols and other oxygen containing compounds 50 to 75 pounds gage. Hence, for the recovery as azeotropic agents has not been entirely satis of benzene from a hydrocarbon mixture the factory since these agents must be removed from amount of methylcyclopentane in the mixture the benzene by extraction with a solvent and the should fall within the range of from about 10.2 agent must then be reconcentrated, which step. 35 moles per mole of benzene in the mixture for adds to the cost of the process. sub-atmospheric pressure fractionation to about It is an object of this invention to Overcome 6 moles of methylcyclopentane per mole of ben the disadvantages of the prior art and produce zene at high fractionation pressures and about relatively pure cyclohexane from benzene by 7.4 or 7.5 moles of methylcyclopentane per mole means of catalytic hydrogenation. Another ob 40 of benzene for moderate pressure fractionation. ject of this invention is to provide a continuous In general, it is desirable to maintain a Small process for producing cyclohexane from benzene excess of methylcyclopentane Over that required by hydrogenation at moderate pressures. A fur to form the azeotropic mixture in Order to insure ther object of this invention is to obtain rela complete removal of benzene. The amount of tively pure cyclohexane substantially free of non 45 methylcyclopentane to be added may be readily hydrogenated benzene by an azetropic agent adjusted to correspond to the operating cond which can be recycled along with the associated tions of the azeotropic fractionation. benzene to the hydrogenation reactor, thus avoid Substantially all of the unconverted benzene ing the intermediate separation of azetropic can be removed from a 95 percent cyclohexane-5 agent from said benzene. Other objects and ad percent benzene hydrogenated benzene product vantages of the invention will be apparent from mixture by adding thereto from about 7.4 to 9.0 the following specification in which the preferred moles of methylcyclopentane per mole of benzene embodiment and details are described. in said product mixture and fractionating of the My improved process consists of catalytically azeotrope at pressures from atmospheric up to 55 50 or 75 pounds per square inch. The benzene of hydrogenating benzene in the presence of methyl f . 2,404. 3 4 this azeotrope fraction can be hydrogenated to 180 C-220 C, and at a pressure preferably in cyclohexane along with fresh benzene feed to the excess of 500 pounds per square inch. I prefer hydrogenation zone. The methylcyclopentane is to operate with space velocities such that at least inert to the hydrogenation reaction at the COn 90 percent of the benzene is converted to cyclo ditions employed although a part of this come hexane. The space velocity in tower f is prefer ponent may be isomerized to cyclohexane thus ably adjusted to give from about 95 to 98 percent producing an increased yield of the desired conversion. Conversions as high as 99.5% may product. be practicably obtained in which case the total In the hydrogenation step of my process, I amount of methylcyclopentane introduced as such subject the mixture of benzene and benzene 0. or as the benzene azeotrope through line 4 is methylcyclopentane azeotrope from previous much reduced since the amount of methylcyclo fractionations to a temperature within the range pentane required is directly proportional to the of from about 70° C. to about 250° C., preferably amount of benzene escaping conversion in tower about 180° C. to 220 C. in the presence of hydro . Thus, at 90 percent conversion of 100 moles of gen and a hydrogenation catalyst such as nickel 15 benzene, ten moles of benzene remain uncon supported on pumice or on other porous but rela verted which if the fractionation of the product tively inactive support. I may also use a catalyst is carried out at atmospheric pressure will re which is less sensitive to poisons. Thus, I may quire the addition of about 90 moles of methyl use molybdenum sulfide, molybdenum oxide Sup cyclopentane to remove said unconverted benzene ported On alumina, or supported on acid treated 90 from the cyclohexane product in fractionator 4. clay such as fuller's earth or attapulgus clay. On the other hand, if 99.5 moles of the benzene Somewhat higher temperatures are required for are converted only about 4.5 moles of methylcy these less active catalysts. The hydrogenation is clopentane per 100 moles of benzene feed to re carried out continuously, preferably in liquid actor need be used. Less methylcyclopentane phase, by passing the mixture of Carbocylic hy 25 will be required if the fractionation is carried out drocarbons and hydrogen over a bed of the cata at higher pressures. lyst in a tower at a space velocity within the The reaction mixture passes from reactor range of from about 1 to 10 volumes of liquid hy through line 25 to hot settler 2 without substan drocarbon per volume of free catalyst space per tial reduction in pressure or temperature. In hour. The hydrogenation reactor is maintained 30 settler 2 undissolved hydrogen separates from at a pressure within the range of from about 100 the liquid product and passes through line 26 to pounds to 1000 pounds gage, preferably from hydrogen recycle line 27. The liquid product about 500 to about 800 pounds per square inch. from settler 2 passes through line 28, cooler 29 The amount of hydrogen added to the hydrocar and line 30 to cold settler 3 which is operated at bons is at least three moles per mole of total ben 35 substantially the same pressure as hot settler 2. Zene including fresh benzene feed and benzene In cooler 29 the temperature of the liquid reac in the recycled azeotrope. I may use as much as tion product is lowered to the range of 100° C.- 12 Or 15 moles of hydrogen per mole of benzene in 125° C. and as a result of the lower temperature a the total feed passing to the hydrogenation zone. Substantial part of the hydrogen dissolved there One mode of conducting the process of my in 0 in at the higher temperature is freed from liquid vention continuously is illustrated diagrammati product which settles out as a separate layer in cally in the accompanying drawing of which the bottom of settler 3. The hydrogen thus numeral represents the catalyst packed hy freed passes through overhead line 3 which con drogenation reactor, 2 and 3 represent hot and nects with hydrogen recycle line 27.
Recommended publications
  • Supplementary Information for “Oligomeric Models for Estimation of Polydimethylsiloxane
    Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2016 Supplementary Information for “Oligomeric models for estimation of polydimethylsiloxane- water partition ratios with COSMO-RS theory: Impact of the combinatorial term on absolute error” by J. Mark Parnis and Donald Mackay. Contents: 1) The complete set of chemicals, with the published values of log K(PDMS-w), and the abbreviated reference, corresponding to references given in the principle text. 1) The complete set of chemicals, with the published values of log KPDMS-w. Hsieh 2011 CHAO 2014 PCB18 4.91 PCB203 7.09 PCB16 5.12 PCB195 6.89 PCB32 5.12 PCB194 6.79 PCB28,31 5.17 Benzyl alcohol -0.35 PCB33,53 5.18 4-Fluorophenol -0.28 PCB22 5.30 m-Cresol -0.03 PCB52 5.48 Phenethyl alcohol 0.12 PCB47,48 5.49 3-Methylbenzyl alcohol 0.17 PCB44 5.44 3-Chlorophenol 0.31 PCB71 5.49 3,5-Dimethylphenol 0.42 PCB41 5.49 3-Bromophenol 0.46 PCB70 5.79 4-Ethylphenol 0.60 PCB66 5.70 4-Chloroaniline 0.84 PCB95 5.77 Phenyl acetate 0.86 PCB56,60 5.86 Benzonitrile 1.04 PCB101 6.01 Acetophenone 1.04 PCB99 6.17 4-Chloroacetophenone 1.64 PCB83 6.02 Methyl benzoate 1.65 PCB97 6.05 Benzene 1.76 PCB87 6.19 Ethylbenzoate 2.12 PCB85 6.38 Toluene 2.28 PCB110 6.03 4-Chloroanisole 2.37 PCB151 6.31 Chlorobenzene 2.40 PCB135 6.48 Bromobenzene 2.51 PCB149 6.42 o-Xylene 2.69 PCB118 6.23 m-Xylene 2.73 PCB146 6.66 Iodobenzene 2.73 PCB153 6.62 p-Xylene 2.75 PCB105,132 6.40 Ethylbenzene 2.75 PCB179 6.73 Phenol -0.18 PCB141 6.73 Naphthalene 2.83 PCB138 6.61 Cyclopentane 2.85 PCB163 6.56 4-Chlorotoluene 2.87 PCB158 6.83 Methylcyclopentane 3.13 PCB187 6.96 Propylbenzene 3.14 PCB182 6.96 Isopropylbenzene 3.15 PCB183 6.26 1,3,5-Trimethylbenzene 3.16 PCB128 6.61 1-Methyl-4-Ethylbenzene 3.20 PCB185 6.86 Cyclohexane 3.20 PCB174 7.04 1-Methylnaphthalene 3.26 PCB177 7.02 1,2,4-Trimethylbenzene 3.34 PCB171,202 6.78 tert-Butylbenzene 3.34 PCB180 6.89 Biphenyl 3.37 PCB170 6.82 2,3-Dimethylbutane 3.37 PCB201 7.06 2-Methylpentane 3.51 CHAO 2014 Kang et al.
    [Show full text]
  • Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
    Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing.
    [Show full text]
  • Combined PIANO Standard
    Combined PIANO Standard Product #: VHG-PIANO-COM-0.1 Lot #: 711069047B Concentration Concentration Component Component (Wt.%) (Wt.%) Isoparaffins Isopentane 0.3371 4-Methylheptane 0.4939 2,3-Dimethylbutane 0.0691 3-Methylheptane 0.8406 2-Methylpentane 0.5031 3-Ethylhexane 0.1097 3-Methylpentane 0.8271 3,3-Dimethylheptane 0.2590 2,2-Dimethylpentane 0.2746 2,5-Dimethylheptane 0.8678 2,4-Dimethylpentane 0.5679 3,5-Dimethylheptane 0.1169 2,2,3-Trimethylbutane 0.6042 2,3-Dimethylheptane 0.2288 3,3-Dimethylpentane 0.2873 3,4-Dimethylheptane 0.5668 2-Methylhexane 0.3643 2-Methyloctane 0.5791 2,3-Dimethylpentane 0.2751 3-Methyloctane 0.8645 3-Methylhexane 0.2475 3,3-Diethylpentane 0.2424 3-Ethylpentane 0.0813 2,2-Dimethyloctane 0.5024 2,2-Dimethylhexane 0.2027 3,3-Dimethyloctane 0.4902 2,5-Dimethylhexane 0.5727 2,3-Dimethyloctane 0.5927 2,2,3-Trimethylpentane 0.2658 3-Ethyloctane 0.5694 2,4-Dimethylhexane 0.2542 2-Methylnonane 0.5727 2,3-Dimethylhexane 0.2492 3-Methylnonane 0.8889 2-Methylheptane 0.6744 Aromatics Benzene 1.6808 1-Methyl-3-n-propylbenzene 0.4972 Toluene 1.0772 1-Methyl-4-n-propylbenzene 0.5237 Ethylbenzene 1.5918 n-Butylbenzene 0.5198 m-Xylene 0.5341 1,2-Diethylbenzene 0.2577 p-Xylene 1.1328 1-Methyl-2-n-propylbenzene 0.5282 o-Xylene 0.5315 1,4-Dimethyl-2-ethylbenzene 0.5379 Isopropylbenzene 0.5235 1,3-Dimethyl-5-ethylbenzene 0.5176 n-Propylbenzene 1.0731 1,2-Dimethyl-4-ethylbenzene 0.5310 1-Methyl-3-ethylbenzene 0.5181 1,3-Dimethyl-2-ethylbenzene 0.2695 1-Methyl-4-ethylbenzene 0.5104 1,2-Dimethyl-3-ethylbenzene 0.5151 1,3,5-Trimethylbenzene
    [Show full text]
  • G.J. Chemical Company, Inc. Safety Data Sheet
    G.J. CHEMICAL COMPANY, INC. SAFETY DATA SHEET . PRODUCT IDENTIFIER 1.1 PRODUCT NAME:------------> Hexane (All Grades) MIXTURE OF ISOMERS PRODUCT NUMBER(S)----------> 175300, 175310 TRADE NAMES/SYNONYMS----> Mixture of n-Hexane and Hexane isomers CAS-No: 110-54-3 CHEMICAL FAMILY: Aliphatic Hydrocarbon 1.2 RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST RECOMMENDED USE: Manufacture of substances. Laboratory chemicals. USES ADVISED AGAINST: No information available 1.3 DETAILS OF THE SUPPLIER OF THE SAFETY DATA SHEET Company: G.J. CHEMICAL CO., INC. Address: 40 VERONICA AVENUE SOMERSET, NJ 08873 Telephone: 1-973-589-1450 Fax: 1-973-589-3072 1.4 Emergency Telephone Number Emergency Phone: 1-800-424-9300 (CHEMTREC) . HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture GHS Classification in accordance with 29CFR 1910 (OSHA HCS) Flammable liquids (Category 2), H225 Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Reproductive toxicity (Category 2), H361f Specific target organ toxicity - single exposure (Category 3), Central Nervous system, H336 Specific target organ toxicity - repeated exposure, Oral (Category 2), H373 Aspiration hazard (Category 1), H304 Acute aquatic toxicity (Category 2), H401 Chronic aquatic toxicity (Category 2), H411 2.2 GHS Label elements, including precautionary statements Pictogram GHS02 GHS08 GHS07 GHS09 Signal word: DANGER Hazard statement(s) H225 Highly flammable liquid and vapor. H304 May be fatal if swallowed and enters airways. H315 Causes skin irritation. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. H361f Suspected of damaging fertility or the unborn child. H373 May cause damage to organs through prolonged or repeated exposure if swallowed.
    [Show full text]
  • US and Canadian
    Version: 1.0 Revision Date: 03/14/2018 SAFETY DATA SHEET 1. Identification Material name: TREMPLY TPO BONDING ADHESIVE 5 GL Material: 423300 805 Recommended use and restriction on use Recommended use : Adhesive Restrictions on use: Not known. Manufacturer/Importer/Supplier/Distributor Information Tremco U.S. Roofing 3735 Green Road Beachwood OH 44122 US Contact person : EH&S Department Telephone : 216-292-5000 Emergency telephone number : 1-800-424-9300 (US); 1-613-996-6666 (Canada) 2. Hazard(s) identification Hazard Classification Physical Hazards Flammable liquids Category 2 Health Hazards Skin Corrosion/Irritation Category 2 Serious Eye Damage/Eye Irritation Category 2A Germ Cell Mutagenicity Category 1B Carcinogenicity Category 1B Toxic to reproduction Category 2 Specific Target Organ Toxicity - Category 1 Repeated Exposure Unknown toxicity - Health Acute toxicity, oral 22.57 % Acute toxicity, dermal 22.72 % Acute toxicity, inhalation, vapor 37.75 % Acute toxicity, inhalation, dust 100 % or mist Environmental Hazards Acute hazards to the aquatic Category 3 environment Unknown toxicity - Environment 1/20 000000026448 Version: 1.0 Revision Date: 03/14/2018 Acute hazards to the aquatic 24.15 % environment Chronic hazards to the aquatic 100 % environment Label Elements Hazard Symbol : Signal Word: Danger Hazard Statement: Highly flammable liquid and vapour. Causes skin irritation. Causes serious eye irritation. May cause drowsiness or dizziness. Suspected of damaging fertility or the unborn child. Causes damage to organs through prolonged or repeated exposure if inhaled. Harmful to aquatic life. Precautionary Statements Prevention: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep container tightly closed. Ground and bond container and receiving equipment.
    [Show full text]
  • Compilation and Analysis of Types and Concentrations of Airborne 3 Chemicals Measured in Various Indoor and Outdoor Human 4 Environments 5 6 7 8 9 1 2 10 J
    Chemosphere,127,70-86,2015 1 2 Compilation and Analysis of Types and Concentrations of Airborne 3 Chemicals Measured in Various Indoor and Outdoor Human 4 Environments 5 6 7 8 9 1 2 10 J. Enrique Cometto-Muñiz and Michael H. Abraham 11 1 12 University of California, San Diego, La Jolla, California, USA and 2 13 Department of Chemistry, University College London, London, UK 14 15 16 17 18 19 20 Address for correspondence: 21 22 J. Enrique Cometto-Muñiz, Ph.D. 23 Research Scientist Emeritus, UCSD 24 8950 Villa La Jolla Drive, Suite C135 25 La Jolla, CA 92037 26 USA 27 28 29 Phone: (858) 622-5832 30 e-mail: [email protected] 31 32 33 34 35 36 37 38 39 40 Running head: Airborne Chemical Concentrations Indoors and Outdoors 41 1 41 Abstract 42 43 The main purpose of this article is to summarize and illustrate the results of a literature search on 44 the types, levels, relative concentrations, concentration spread of individual chemicals, and number of 45 airborne compounds (mostly volatile organic compounds, VOCs) that have been found, measured, and 46 reported both indoors and outdoors. Two broad categories of indoor environments are considered: 1) 47 Home/School, and 2) Commercial spaces. Also, two categories of outdoor environments are considered: 48 1) Non-industrial and 2) Industrial (the latter represented by the vicinity of a pig farm and the vicinity of an 49 oil refinery). The outcome is presented as a series of graphs and tables containing the following statistics: 50 geometric mean, arithmetic mean, median, standard deviation, variance, standard error, interquartile 51 distance, minimum value, maximum value, and number of data (data count) for the air concentration of 52 each reported compound in a given environment.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Methylcyclopentane (Casrn 96-37-7)
    EPA/690/R-09/030F l Final 9-15-2009 Provisional Peer-Reviewed Toxicity Values for Methylcyclopentane (CASRN 96-37-7) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 COMMONLY USED ABBREVIATIONS BMD Benchmark Dose IRIS Integrated Risk Information System IUR inhalation unit risk LOAEL lowest-observed-adverse-effect level LOAELADJ LOAEL adjusted to continuous exposure duration LOAELHEC LOAEL adjusted for dosimetric differences across species to a human NOAEL no-observed-adverse-effect level NOAELADJ NOAEL adjusted to continuous exposure duration NOAELHEC NOAEL adjusted for dosimetric differences across species to a human NOEL no-observed-effect level OSF oral slope factor p-IUR provisional inhalation unit risk p-OSF provisional oral slope factor p-RfC provisional inhalation reference concentration p-RfD provisional oral reference dose RfC inhalation reference concentration RfD oral reference dose UF uncertainty factor UFA animal to human uncertainty factor UFC composite uncertainty factor UFD incomplete to complete database uncertainty factor UFH interhuman uncertainty factor UFL LOAEL to NOAEL uncertainty factor UFS subchronic to chronic uncertainty factor i FINAL 9-15-2009 PROVISIONAL PEER-REVIEWED TOXICITY VALUES FOR METHYLCYCLOPENTANE (CASRN 96-37-7) Background On December 5, 2003, the U.S. Environmental Protection Agency’s (U.S. EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) revised its hierarchy of human health toxicity values for Superfund risk assessments, establishing the following three tiers as the new hierarchy: 1) U.S. EPA’s Integrated Risk Information System (IRIS). 2) Provisional Peer-Reviewed Toxicity Values (PPRTVs) used in U.S.
    [Show full text]
  • Compound Other Saturated Aliphatic Hydrocarbons C6-C8 Data Collection Sheet (1/4)
    Compound Other saturated aliphatic hydrocarbons C6-C8 Data collection sheet (1/4) See Annex 1 for existing human health-based CLP See Table 1 for CAS numbers in the factsheet classifications in the factsheet Organisation name AgBB ANSES BAuA ECHA ECHA DNEL(general population, long-term, inhalation, systemic) DNEL(general population, long-term, [Hydrocarbons, C6-C7, n- NIK (=LCI) CLI (=LCI) OEL (aliphatic C6-C8) inhalation, systemic) alkanes, isoalkanes, (octane & isooctane) cyclics, <5% n-hexane” Risk value name (EC number: 921-024-6)] Risk value (µg/m3) 15000 10000 700000 608000 608000 Risk value (ppb) N/A N/A N/A N/A ~130000 Reference period Chronic Chronic Chronic Chronic Chronic Year 2012 1993 2017 2011, updated 2017 2011, updated in 2017 GLP-guideline study GLP-guideline study (OECD guideline 413) as (OECD guideline 413) as Key study N/A N/A N/A reported in the reported in the registration dossiers for registration dossier octane and isooctane Subchronic inhalation Subchronic inhalation Study type N/A N/A N/A study study Species N/A N/A N/A Rat Rat 6 h/d, 5 d/wk for 13 6 h/d, 5 d/wk for 13 Duration of exposure N/A N/A N/A weeks weeks Value based on provisional The group limit value Subchronic toxicity or Subchronic toxicity or OEL by the German BAuA is based on the 700 neurotoxic effects of neurotoxic effects of Critical effect for C5-C8 aliphatic N/A mg/m³ (200 ppm) “light alkylate naphtha “light alkylate naphtha hydrocarbons in 2012 limit value for distillate” (CAS 64741-66- distillate” (CAS 64741-66- (BAuA, 2012).
    [Show full text]
  • Health Effects Review of 2010 Ambient Air Network Monitoring
    TCEQ Interoffice Memorandum To: Jaime Garza, Regional Director From: Sabine Lange, Ph.D. Toxicology Division, Office of the Executive Director Date: August 4, 2015 Subject: Toxicological Review of 2014 Ambient Air Network Monitoring Data in Region 15, Harlingen Conclusions All 24-hour average and annual average concentrations of 84 volatile organic compounds (VOCs), 16 polycyclic aromatic hydrocarbons (PAHs), and two metals measured in total suspended particulate matter (TSP) were below their respective Texas Commission on Environmental Quality (TCEQ) air monitoring comparison values (AMCVs) and would not be expected to cause adverse health effects or vegetation effects. Background Ambient air sampling conducted at two monitoring network sites in Region 15, Harlingen during 2014 was evaluated by the Toxicology Division (TD). Table 1 indicates the location and monitored compounds at two Community Air Toxics Monitoring Network sites in Region 15. Hyperlinks are provided in Table 1 for more detailed information on each monitoring site. The TD reviewed air monitoring summary results for VOCs, PAHs, and speciated metals data from 24-hour TSP samples collected every sixth-day. For a complete list of all examined chemicals, please see Lists 1, 2, and 3 in Attachment A. The TCEQ Monitoring Division reported the data for all chemicals evaluated in this memorandum. All data collected [84 VOCs, 16 PAHs, and 2 metals (TSP)] from the Brownsville and Mission monitoring sites met the data completeness objective of 75 percent data return. Twenty-four-hour air samples collected every sixth-day for a year are designed to provide representative long-term average concentrations. In order to be able to evaluate 24-hour monitoring data more fully, TCEQ has developed 24-hour AMCVs for specific chemicals.
    [Show full text]
  • Identification of Polycyclic Aromatic Hydrocarbons in the Supercritical
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Identification of Polycyclic Aromatic Hydrocarbons in the Supercritical Pyrolysis Products of Synthetic Jet Fuel S-8 and Methylcyclohexane Jorge Oswaldo Ona Ruales Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemical Engineering Commons Recommended Citation Ona Ruales, Jorge Oswaldo, "Identification of Polycyclic Aromatic Hydrocarbons in the Supercritical Pyrolysis Products of Synthetic Jet Fuel S-8 and Methylcyclohexane" (2008). LSU Doctoral Dissertations. 2092. https://digitalcommons.lsu.edu/gradschool_dissertations/2092 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IDENTIFICATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE SUPERCRITICAL PYROLYSIS PRODUCTS OF SYNTHETIC JET FUEL S-8 AND METHYLCYCLOHEXANE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemical Engineering by Jorge Oswaldo Oña Ruales Ingeniero Quimico, Universidad Central del Ecuador – Quito, 2000 May, 2008 ACKNOWLEDGEMENTS I would like to thank the following: My advisor, Prof. Mary Julia Wornat, for her wise guidance during the last six years, for introduce me to the world of polycyclic aromatic hydrocarbons, and for showing me how to transform my observations into words and the words into scientific papers.
    [Show full text]
  • Metals Compounds Carbonyls Compounds Polycyclic Aromatic Hydrocarbons (PAH)
    Metals Compounds ANTIMONY(TSP) ARSENIC(TSP) BERRYLIUM(TSP) CADMIUM(TSP) CHROMIUM(TSP) COBALT(TSP) LEAD(TSP) MANGANESE(TSP) NICKEL(TSP) SELENIUM(TSP) ZINC(TSP) Carbonyls Compounds ACETALDEHYDE ACETONE ACROLEIN BENZALDEHYDE BUTYRALDEHYDE FORMALDEHYDE PROPIONALDEHYDE Polycyclic Aromatic Hydrocarbons (PAH) NAPHTHALENE ACENAPHTHYLENE(TSP) ACENAPHTHENE(TSP) FLUORENE(TSP) PHENANTHRENE ANTHRACENE FLUORANTHENE(TSP) PYRENE(TSP) BENZO(A)ANTHRACENE(TSP) CHRYSENE(TSP) BENZO(E)PYRENE(TSP) BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE(TSP) DIBENZO(A-H)ANTHRACENE BENZO(g,h,i)PERYLENE(TSP) INDENO(1-2-3-cd)PYRENE Volatile Organic Compounds (VOC) 1-1-2-2-Tetrachloroethane 1-1-2-Trichloroethane 1-1-DiChloroEthane 1-1-DiChloroEthylene 1-2-4-TriChloroBenzene 1-2-4-TriMethylBenzene 1-2-DiChloroBenzene 1-2-DiChloroPropane 1-3-5-TriMethylBenzene 1-3-Butadiene 1-3-DichloroBenzene 1-4-DichloroBenzene 4-EthylToluene Benzene BenzylChloride Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1-2-DiChloroEthene cis-1-3-DiChloroPropylene Cyclohexane DiChloroDiFluoroMethane DiChloroMethane(Methylene Chloride) Ethylbenzene Ethylene DiBromide(1,2-Dibromoethane) Ethylene DiChloride(1,2-Dichlororethane) Freon 113 Freon 114 HexaChloroButadiene M/P Xylene (m & p-Dimethylbenzene) MethylChloroform(1,1,1-Trichloroethane) O-Xylene (o-Dimethylbenzene) Styrene TetraChloroEthylene Toluene Trans-1-3-DiChloroPropylene TriChloroEthylene TriChloroFluoroMethane(Freon 11) Vinyl Chloride(Chloroethene) Photochemical Assessment Monitoring (PAMS)
    [Show full text]
  • Introduction to Organic Chemistry: Hydrocarbons
    Chapter 12 – Introduction to Organic Chemistry: Hydrocarbons Section 12.1 – Alkanes Goal: Identify properties characteristic of organic or inorganic compounds. Summary: Organic compounds: always contain carbon and hydrogen (thought sometimes other nonmetals as well.) Inorganic compounds: all other compounds. Often ionic (metal + nonmetal) Organic compounds Inorganic compounds Covalent bonds Often ionic or contain polar covalent bonds Most form nonpolar molecules Usually soluble in water Low melting and boiling points High melting and boiling points Not very soluble in water Most are soluble, unless nonpolar Dissolve as molecules in solutions (not ions) Produce ions in water Burn vigorously in air Do not burn in air Each carbon atom covalently bonds 4 times (due to its 4 valence electrons). When 4 individual groups are attached to a carbon, it has a tetrahedral geometry. Practice Problems 1. Identify each the following as a formula of an organic or inorganic compound: a. KCl b. C4H10 c. C2H6O d. H2SO4 e. CaCl2 f. C3H7Cl 2. Identify each of the following as a formula of an organic or inorganic compound: a. C6H12O6 b. K3PO4 c. I2 d. C2H6S e. C10H22 f. C4H9Br 3. Identify each of the following properties as more typical of an organic or inorganic compound: a. is soluble in water b. has a low boiling point c. contains carbon and hydrogen d. contains ionic bonds 4. Identify each of the following properties as more typical of an organic or inorganic compound: a. contains Li and F b. is a gas at room temperature c. contains covalent bonds d. produces ions in water 5.
    [Show full text]