Exploring Oil And

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Oil And 2012-2013 Exploring Oil and Gas Reading and hands-on explorations introduce students to the basic concepts of oil and natural gas formation, composition, exploration, production, and use. Grade Level: n Intermediate n Secondary Subject Areas: n Science n Social Studies n Math n Language Arts n Technology NEED Mission Statement The mission of The NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multi- sided energy education programs. Teacher Advisory Board Teacher Advisory Board Statement Shelly Baumann Matthew Inman In support of NEED, the national Teacher Advisory Board Rockford, MI Spokane, Washington (TAB) is dedicated to developing and promoting standards- based energy curriculum and training. Constance Beatty Michelle Lamb Kankakee, IL Buffalo Grove, IL Permission to Copy Sara Brownell Barbara Lazar NEED materials may be reproduced for non-commercial Canyon Country, CA Albuquerque, NM educational purposes. Loree Burroughs Robert Lazar Merced, CA Albuquerque, NM Energy Data Used in NEED Materials Amy Constant Leslie Lively NEED believes in providing the most recently reported Raleigh, NC Reader, WV energy data available to our teachers and students. Most statistics and data are derived from the U.S. Energy Joanne Coons Mollie Mukhamedov Information Administration’s Annual Energy Review that is Clifton Park, NY Port St. Lucie, FL published in June of each year. Working in partnership with EIA, NEED includes easy to understand data in our curriculum Nina Corley Don Pruett materials. To do further research, visit the EIA web site at Galveston, TX Sumner, WA www.eia.gov. EIA’s Energy Kids site has great lessons and activities for students at www.eia.gov/kids. Regina Donour Josh Rubin Whitesburg, KY Palo Alto, CA Linda Fonner Joanne Spaziano New Martinsville, WV Cranston, RI Samantha Forbes Gina Spencer Vienna, VA Virginia Beach, VA Viola Henry Tom Spencer Thaxton, VA Chesapeake, VA Robert Hodash Joanne Trombley Bakersfield, CA West Chester, PA DaNel Hogan Jim Wilkie Kuna, ID Long Beach, CA Greg Holman Carolyn Wuest Paradise, CA Pensacola, FL 1.800.875.5029 www.NEED.org Linda Hutton Wayne Yonkelowitz © 2012 Kitty Hawk, NC Fayetteville, WV Printed on Recycled Paper 2 Exploring Oil and Gas Exploring Oil and Gas Table of Contents Correlations to National Science Education Standards 4 Getting the Oil Out 65 Materials 10 Perforated Well Casing 66 Teacher Guide 12 Visualizing Hydraulic Fracturing 68 Answer Key 29 Fracking Box Assembly Instructions 70 Fault Blocks Master 35 Fracking With Jello 72 Student Informational Text 36 Fracking a Cake 74 Global Climate Change 49 Understanding Density 76 What is Hydraulic Fracturing? 53 Using Density to Extract Petroleum 77 Hydrocarbon Properties 55 Polymers 78 Formation of Petroleum and Natural Gas 57 Oil and Gas Career Game 80 Exploring Polarity 58 Peak Oil Game 81 Fault Blocks 59 Road Trip 82 Mapping the Ocean Floor 60 Additional Activities and Resources 83 Exploring Sound Waves 62 Glossary 84 Exploring Core Sampling 63 Evaluation Form 87 Exploring Porosity 64 Oil and Natural Gas, from the Society of Petroleum Engineers, is a great classroom resource that supplements the information and activities in Exploring Oil and Gas. To order, visit http://www.energy4me.org/order/oil-and-natural-gas/. ©2012 The NEED Project P.O. Box 10101, Manassas, VA 20108 1.800.875.5029 www.NEED.org 3 Correlations to National Science Education Standards: Grades 6-12 This book has been correlated to National Science Education Content Standards. For correlations to individual state standards, visit www.NEED.org. Content Standard A | Science aS inquiry Abilities Necessary to do Scientific Inquiry (5-8) Use appropriate tools and techniques to gather, analyze, and interpret data. Develop descriptions, explanations, predictions, and models using evidence. Think critically and logically to make the relationships between evidence and explanations. Abilities Necessary to do Scientific Inquiry (9-12) Use technology and mathematics to improve investigations and communications. Formulate and revise scientific explanations and models using logic and evidence. Recognize and analyze alternative explanations and models. Communicate and defend a scientific argument. Content Standard B | PhySical Science Properties and Changes of Properties in Matter (5-8) A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties. Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group. Transfer of Energy (5-8) Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways. In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light mechanical motion, or electricity might all be involved in such transfers. Structure of Atoms (9-12) Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together. Structure and Properties of Matter (9-12) Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element. Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically. The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them. Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life. 4 Exploring Oil and Gas Correlations to National Science Education Standards: Grades 6-12 This book has been correlated to National Science Education Content Standards. For correlations to individual state standards, visit www.NEED.org. Chemical Reactions (9-12) Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies. Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog. A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/ base reactions) between reacting ions, molecules, or atoms. In other reactions, chemical bonds are broken by heat or light to form very reactive radicals with electrons ready to form new bonds. Radical reactions control many processes such as the presence of ozone and greenhouse gases in the atmosphere, burning and processing of fossil fuels, the formation of polymers, and explosions. Catalysts, such as metal surfaces, accelerate chemical reactions. Chemical reactions in living systems are catalyzed by protein molecules called enzymes. Conservation of Energy and the Increase in Disorder (9-12) The total energy of the universe is constant. Energy can be transferred by collisions in chemical and nuclear reactions, by light waves and other radiations, and in many other ways. However, it can never be destroyed. As these transfers occur, the matter involved becomes steadily less ordered. All energy can be considered to be either kinetic energy, which is the energy of motion; potential energy, which depends on relative position; or energy contained by a field, such as electromagnetic waves. Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion. Everything tends to become less organized and less orderly over time. Thus, in all energy transfers, the overall effect is that the energy is spread out uniformly. Examples are the transfer of energy from hotter to cooler objects by conduction, radiation, or convection and the warming of our surroundings when we burn fuels. Interactions of Energy and Matter (9-12) Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter. Content Standard C | life Science Regulation and Behavior (5-8) All organisms must be
Recommended publications
  • Stratigraphy of the Upper Carboniferous Schooner Formation, Southern North Sea: Chemostratigraphy, Mineralogy, Palynology and Sm–Nd Isotope Analysis
    Stratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea: chemostratigraphy, mineralogy, palynology and Sm–Nd isotope analysis T. J. Pearce,1 D. McLean,2 D. Wray,3 D. K. Wright,4 C. J. Jeans,5 E. W. Mearns6 1, 4: Chemostrat Ltd, Units 3 & 4, Llanfyllin Enterprise Park, Llanfyllin, Powys, SY22 5DD 2: Palynology Research Facility, Department of Animal and Plant Sciences, Western Bank, Sheffield, S10 2TN 3: Department of Earth Sciences, University of Greenwich, Chatham Maritime, Kent, ME4 4TB 5: Department of Earth Sciences, Cambridge University, Downing Street, Cambridge, CB2 3EQ 6: Isotopic Ltd, Craigiebuckler House, Macaulay Drive, Aberdeen, AB15 8QH Summary The continental, predominantly redbed sequences of the Upper Carboniferous Schooner Formation (“Barren Red Measures”) from the southern North Sea represent a significant gas reservoir, but, as they are largely devoid of microfossils, interwell corre- lations are difficult. The stratigraphy of the formation is re-evaluated by applying a multidisciplinary approach, which includes chemostratigraphy, mineralogy, palynology, Sm–Nd isotopes, petrophysics and sedimentology, to well 44/21-3, as it has encountered a thick, relatively complete section through the Schooner Formation. The formation is divided into three chemo- stratigraphical units (S1, S2 and S3) and eleven sub-units on the basis of variations in the mudstone and sandstone data, these variations being linked to changes in provenance, depositional environment and climate. The chemostratigraphical zonation is compared with the biostratigraphical zonation of the same section – heavy-mineral data confirm the sediment source, and Sm– Nd isotope data provide a provenance age for the well 44/21-3 interval. The correlation potential of the new stratigraphical frame- work is tested on several scales, using data acquired from other southern North Sea wells and from Upper Carboniferous strata of the English Midlands.
    [Show full text]
  • Amarinth's New Export Sales Manager Secures
    FOR IMMEDIATE RELEASE – 26 November 2013 Amarinth increases its foothold in the Norwegian oil and gas sector with multiple pump orders from Statoil Amarinth, a leading company specialising in the design, application and manufacture of centrifugal pumps and associated equipment to the Oil & Gas, petrochemical, chemical and industrial markets, has secured three new orders this year from Statoil, the leading operator on the Norwegian continental shelf in the North Sea. Working closely with Axflow, the largest distributor of positive displacement pumps in Europe, Amarinth followed an initial order from Statoil that was successfully completed earlier in the year with a second order to supply pumps for use in the Oseberg oil field on a very tight 24 week delivery. Amarinth then quickly secured a third order from Statoil to supply close coupled motor pumps in 316 stainless steel with API 682 seal support systems for use in the Gullfaks field, this time on a challenging 30 week delivery. Statoil requires its suppliers to follow strict processes and manage their supply chain stringently. This includes compliance with Norsok M650 which establishes a set of qualification requirements to verify that the manufacturer has sufficient competence and experience of the relevant material grades and necessary facilities and equipment to manufacture to the required shapes and sizes with acceptable properties. The foundries used to manufacture the castings also have to be approved by Statoil. – MORE – Amarinth increases its foothold in the Norwegian oil and gas sector Page 2 of 4 Alex Brigginshaw Tel: +44 (0)1394 462131 Phil Harland Tel: +44 (0)118 971 3790 Amarinth has established close working relationships with its own supply chain and had already ensured that all of the foundries used by the company in the UK are approved by Statoil.
    [Show full text]
  • Total E&P Norge AS
    ANNUAL REPORT TOTAL E&P NORGE AS E&P NORGE TOTAL TOTAL E&P NORGE AS ANNUAL REPORT 2014 CONTENTS IFC KEY FIGURES 02 ABOUT TOTAL E&P NORGE 05 BETTER TOGETHER IN CHALLENGING TIMES 07 BOARD OF DIRECTORS’ REPORT 15 INCOME STATEMENT 16 BALANCE SHEET 18 CASH FLOW STATEMENT 19 ACCOUNTING POLICIES 20 NOTES 30 AUDITIOR’S REPORT 31 ORGANISATION CHART IBC OUR INTERESTS ON THE NCS TOTAL E&P IS INVOLVED IN EXPLORATION AND PRODUCTION O F OIL AND GAS ON THE NORWEGIAN CONTINENTAL SHELF, AND PRODUCED ON AVERAGE 242 000 BARRELS OF OIL EQUIVALENTS EVERY DAY IN 2014. BETTER TOGETHER IN CHALLENGING TIMES Total E&P Norge holds a strong position in Norway. The Company has been present since 1965 and will mark its 50th anniversary in 2015. TOTAL E&P NORGE AS ANNUAL REPORT TOTAL REVENUES MILLION NOK 42 624 OPERATING PROFIT MILLION NOK 22 323 PRODUCTION (NET AVERAGE DAILY PRODUCTION) THOUSAND BOE 242 RESERVES OF OIL AND GAS (PROVED DEVELOPED AND UNDEVELOPED RESERVES AT 31.12) MILLION BOE 958 EMPLOYEES (AVERAGE NUMBER DURING 2013) 424 KEY FIGURES MILLION NOK 2014 2013 2012 INCOME STATEMENT Total revenues 42 624 45 007 51 109 Operating profit 22 323 24 017 33 196 Financial income/(expenses) – net (364) (350) (358) Net income before taxes 21 959 23 667 32 838 Taxes on income 14 529 16 889 23 417 Net income 7 431 6 778 9 421 Cash flow from operations 17 038 15 894 17 093 BALANCE SHEET Intangible assets 2 326 2 548 2 813 Investments, property, plant and equipment 76 002 67 105 57 126 Current assets 7 814 10 506 10 027 Total equity 15 032 13 782 6 848 Long-term provisions
    [Show full text]
  • RKU Nordsjøen – Konsekvenser Av Regulære Utslipp Til Sjø
    Lars Petter Myhre, Gunnar Henriksen, Grethe Kjeilen-Eilertsen, Arnfinn Skadsheim, Øyvind F Tvedten. RKU Nordsjøen – Konsekvenser av regulære utslipp til sjø Rapport IRIS – 2006/113 www.irisresearch.no © Kopiering er kun tillatt etter avtale med IRIS eller oppdragsgiver. International Research Institute of Stavanger (IRIS) er sertifisert etter et kvalitetssystem basert på standard NS - EN ISO 9001 International Research Institute of Stavanger AS. www.irisresearch.no Lars Petter Myhre, Gunnar Henriksen, Grethe Kjeilen-Eilertsen, Arnfinn Skadsheim, Øyvind F Tvedten. RKU Nordsjøen – Konsekvenser av regulære utslipp til sjø Rapport IRIS – 2006/113 Prosjektnummer: 7151743 Kvalitetssikrer: Jan Fredrik Børseth Oppdragsgiver: OLF/Statoil ISBN: 82-490-0450-7 www.irisresearch.no © Kopiering er kun tillatt etter avtale med IRIS eller oppdragsgiver. International Research Institute of Stavanger (IRIS) er sertifisert etter et kvalitetssystem basert på standard NS - EN ISO 9001 IRIS – International Research Institute of Stavanger. http://www.irisresearch.no Forord Denne rapporten inngår som en del av “Regional konsekvensutredning for petroleumsvirksomheten i Nordsjøen” (RKU-Nordsjøen). RKU-Nordsjøen består av en rekke temarapporter som dokumenterer konsekvensene av den samlede nåværende og framtidige petroleumsaktiviteten på norsk sokkel sør for 62. breddegrad. Hensikten med regionale konsekvensutredninger er primært å gi en bedre oversikt over konsekvensene av petroleumsaktiviteten på sokkelen enn det enkeltstående feltvise konsekvensutredninger gir.
    [Show full text]
  • Paper No Paper Title Author Details Company Page 1
    1997 Paper Paper Title Author Details Company Page No Comparing Performance of 1 Multiphase Meters (How to See the C J M Wolff Shell International E&P 3 Wood from the Trees) The Porsgrunn 2 Test Programme of Multiphase Meters – General S A Kjølberg Norsk Hydro 2 Results, Errors vs. Operating 18 H Berentsen Statoil Conditions and New Ways of Error Presentation Topside and Subsea Experience B H Torkildsen, P B Hlemers 3 with the Framo Multiphase Flow Framo Engineering AS 31 and S Kanstaf Meter Åsgard and Gullfaks Satellite Field H Berentsen and S Klemp Statoil 4 Developments – Efficient 50 B L Pedersen Multi-Fluid Integration of Multiphase Meters X-ray Visualisation and Dissolved Gas Quantification: Multiphase A R W Hall and 5 NEL 57 Flow Research and Development at A E Corlett NEL G A Johansen, Measurement Strategies for 6 E A Hammer, E Åbro and University of Bergen 70 Downhole Multiphase Metering J Tollefsen The New DTI Petroleum 7 D Griffin and L Philp DTI 81 Measurement Guidelines The Norwegian Regulations 8 Relating to Fiscal Measurements of O Selvikvåg NPD 141 Oil and Gas – 1997 Update Flow Metering Concepts. An 9 L Brunborg and D Dales Kvaerner Oil & Gas as 152 Engineering Contractors Experience Software Testability in Fiscal Oil and Gas Flowmetering Based on 10 K S P Mylvaganam Bergen College 161 Volume, Density, Temperature and Pressure Measurements Recent Developments in the 11 Uncertainty Analysis of Flow J G V van der Grinten Nederlands Meetinstituut 189 Measurement Processes A Practical Example of Uncertainty 12 Calculations for a Metering Station Ø Midtveie and J Nilsson Christian Michelsen Research AS 202 – Conventional and New Methods European Calibration Intercomparison on Flow Meters – Swedish National Testing and 13 P Lau 221 How Accurate Can One Expect to Research Institute Measure Flow Rates? Experience with Ultrasonic Flow G J de Noble and 14 Meter at the Gasunie Export N.V.
    [Show full text]
  • Natural Radioactivity in Produced Water from the Norwegian Oil and Gas Industry in 2003
    Strålevern Rapport 2005:2 Natural Radioactivity in Produced Water from the Norwegian Oil and Gas Industry in 2003 Norwegian Radiation Protection Authority Postboks 55 N-1332 Østerås Norway Reference: NRPA (2004). Natural Radioactivity in Produced Water from the Norwegian Oil and Gas Industry in 2003. StrålevernRapport 2005:2. Østerås: Norwegian Radiation Protection Authority, 2004. Authors: Gäfvert T, Færevik I Key words: Radioactivity, Produced Water, Radium, 226Ra, 228Ra, 210Pb, Oil and gas industry, The North Sea Abstract: This report presents results of a survey of natural radioactivity (226Ra, 228Ra and 210Pb) in produced water from all 41 Norwegian platforms in the North Sea discharging produced water. The sampling campaign took place from September 2003 to January 2004. Based on the data presented the average activity concentrations of 226Ra and 228Ra in produced water from the Norwegian oil and gas industry have been estimated to 3.3 Bq l-1 and 2.8 Bq l-1, respectively. With one exception, all results obtained for 210Pb were below the detection limit of about 1 Bq l-1.The estimated total activities of 226Ra and 228Ra discharged in 2003 are 440 GBq (range 310-590 GBq) and 380 GBq (range 270-490 GBq), respectively. Referanse: Statens strålevern (2004). Naturlig radioaktivitet i produsertvann fra den norske olje- og gassindustrien i 2003. StrålevernRapport 2005:2. Østerås: Statens strålevern, 2004. Språk: engelsk. Forfattere: Gäfvert T, Færevik I Emneord: Radioaktivitet, Produsertvann, Radium, 226Ra, 228Ra, 210Pb, Nordsjøen Resymé: Rapporten viser resultater fra en undersøkelse av naturlig radioaktivitet (226Ra, 228Ra and 210Pb) i produsert vann fra samtlige 41 norske plattformer i Nordsjøen med slike utslipp.
    [Show full text]
  • Contaminants in North Sea Sediments
    Technical Report TR_004 Technical report produced for Strategic Environmental Assessment – SEA2 CONTAMINANT STATUS OF THE NORTH SEA Produced by CEFAS August 2001 © Crown copyright TR_004.doc Strategic Environmental Assessment - SEA2 Technical Report 004 - Contamination CONTAMINANT STATUS OF THE NORTH SEA Dave Sheahan, Richard Rycroft, Yvonne Allen, Andrew Kenny, Claire Mason, Rachel Irish CEFAS CONTENTS EXECUTIVE SUMMARY ........................................................................................................................ 5 Chemicals used offshore ................................................................................................................ 5 Cuttings Piles .......................................................................................................................... 5 Produced Water ...................................................................................................................... 5 Chemicals in the environment......................................................................................................... 6 Water ................................................................................................................................ 6 Sediments ......................................................................................................................... 6 Biota .................................................................................................................................. 7 Evidence of biological effects.........................................................................................................
    [Show full text]
  • The Influence of Geological Data on the Reservoir Modelling and History Matching Process
    The influence of geological data on the reservoir modelling and history matching process G. de Jager 2 The influence of geological data on the reservoir modelling and history matching process Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op woensdag 11 april 2012 om 10:00 uur door Gerben DE JAGER doctorandus in de Geologie geboren te Nijmegen 3 Dit proefschrift is goedgekeurd door de promotor: Prof. dr. S.M. Luthi Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof. Dr. S.M. Luthi, Technische Universiteit Delft, promotor Prof. Dr. Ir. J.D. Jansen, Technische Universiteit Delft Prof. Dr.Ir. M.F.P. Bierkens, Universiteit Utrecht Prof. Ir. C.P.J.W. van Kruisdijk, Royal Dutch Shell Prof. W.R. Rossen, Technische Universiteit Delft Dr. J.E.A. Storms, Technische Universiteit Delft Dr. Ir. E. Peters, TNO Prof. Dr. J. Bruining Technische Universiteit Delft, reservelid Copyright © by G. de Jager, Section of Applied Geology, Faculty of Civil Engineering and Geotechnology, Delft University of Technology. All rights reserved, no parts of this thesis may be reproduced, stored in any retrieval system or transmitted, in any forms ro by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the author. 4 Voor Iris, Roan en Timo 5 6 Contents 1. Introduction ................................................................................ 11 1.1 Hydrocarbons and their production ................................. 11 1.1.1 Energy consumption ......................................................... 11 1.1.2 Oil price change & future outlook ...................................
    [Show full text]
  • Statoil-Underlag RKU-Konsekvenser Av Regulære Utslipp Til Sjø
    RF – Rogalandsforskning. http://www.rf.no Skadsheim, A1., Kjeilen, G.1, Melbye, A.2, Rye, H.2, Aas, E1. 1) RF – Rogalandsforskning 2) SINTEF, Trondheim Konsekvenser av regulære utslipp til sjø – RKU Norskehavet Rapport RF – 2002/081 Prosjektnummer: 7151656 Prosjektets tittel: Konsekvenser av regulære utslipp til sjø – RKU Norskehavet Kvalitetssikrer: Jan Fredrik Børseth Oppdragsgiver(e): Statoil på vegne av OLF ISBN: 82-490-0193-1 Gradering: Åpen fra 15.09.02 © Kopiering kun tillatt etter avtale med RF eller oppdragsgiver RF – Rogalandsforskning. http://www.rf.no Forord Denne rapporten er utarbeidet som et underlag for ”Regional konsekvensutredning for Norskehavet” (RKU-Norskehavet). RKU-Norskehavet er gjennomført i regi av OLF (Oljeindustriens landsforening), og er finansiert av oljeselskaper som i år 2002 var eiere av felt og funn innenfor ressursklassene 1-4 på norsk sokkel, mellom 62°N og 69°N. Statoil har på vegne av de andre selskapene hatt sekretariatsfunksjonen og ledet arbeidet. Hensikten med regionale konsekvensutredninger er å gi en bedre oversikt over konsekvensene av petroleumsaktiviteten på sokkelen enn det enkeltstående feltvise konsekvensutredninger gir, samt forenkle arbeidet med konsekvensutredninger både for selskapene og myndighetene. Den regionale konsekvensutredningen vil bli benyttet som referansedokument for framtidige feltspesifikke konsekvensutredninger. Rapporten vil, sammen med andre underlagsrapporter, danne utgangspunktet for utarbeidelse av en sluttrapport som belyser de samlede konsekvensene av petroleumsvirksomheten
    [Show full text]
  • Rock Physics Attributes Analysis for Identification and Characterization of Fluid Content at Hydrocarbon Reservoirs - Revisiting the Viking Graben Basin Dataset
    UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE GEOCIÊNCIAS CURSO DE PÓS-GRADUAÇÃO EM GEOFÍSICA MASTER DEGREE DISSERTATION Rock Physics Attributes Analysis for Identification and Characterization of Fluid Content at Hydrocarbon Reservoirs - Revisiting the Viking Graben Basin dataset JORGE ANTONIO TERUYA MONROE Belém April, 2015 JORGE ANTONIO TERUYA MONROE Rock Physics Attributes Analysis for Identification and Characterization of Fluid Content at Hydrocarbon Reservoirs - Revisiting the Viking Graben Basin dataset Dissertation submitted to the Graduate Program in Geophysics of the Univerdade Federal do Pará for obtaining a Master's Degree in Geophysics. Concentration area: Seismic Methods Supervisor: Dr. José Jadsom Sampaio de Figueiredo Belém 2015 Dados Internacionais de Catalogação na Publicação (CIP) Sistemas de Bibliotecas da UFPA Jorge Antonio Teruya Monroe Rock Physics Attributes Analysis for Identification and Characterization of Fluid Content at Hydrocarbon Reservoirs - Revisiting the Viking Graben Basin dataset/ Jorge Antonio Teruya Monroe; Adviser: Dr. José Jadsom Sampaio de Figueiredo; - April, 2015 89 f.: il. Dissertação (mestrado em Geofísica) - Universidade Federal do Pará, Instituto de Geociências, Programa de Graduação em Geofísica, Belém, April, 2015. I. Jorge Antonio Teruya Monroe, orient. II. Universidade Federal do Pará. III. Título. CDD 22a ed.: 550 JORGE ANTONIO TERUTA MONROE Rock Physics Attributes Analysis for Identification and Characterization of Fluid Content at Hydrocarbon Reservoirs - Revisiting the Viking Graben Basin dataset Dissertation submitted to the Graduate Program in Geophysics of the Universidade Federal do Pará for obtaining a Master´s Degree in Geophysics. Approval Date: 17/04/2015 In memory of my father Jorge Teruya Teruya who always instilled in me the wisdom to tire my goals, I know he still cares for me..
    [Show full text]
  • Amarinth Increases Its Foothold in the Norwegian Oil and Gas Sector with Multiple Pump Orders from Statoil
    14/06/2019 Your Oil and Gas News - Amarinth increases its foothold in the Norwegian oil and gas sector with multiple pump orders from Statoil GLOBAL LEADER IN INTERNATIONAL OIL AND GAS INDUSTRY NEWS Home Contact us Agents Blog Release Your News Shop Publications Advertise Search Go Oil and Gas Directory posted in: Oil and Gas Projects Home> Oil & Gas News> Europe, > Amarinth increases its foothold in the Norwegian oil and gas sector with multiple pump orders from Statoil Your Industry News Oil & Gas News Amarinth increases its foothold in the Norwegian oil and Decommissioning News gas sector with multiple pump orders from Statoil Drilling News Wednesday, Nov 27, 2013 Exploration News Amarinth, a leading company specialising in the design, application and manufacture LNG News of centrifugal pumps and associated equipment to the Oil & Gas, petrochemical, Oil and Gas Training News chemical and industrial markets, has secured three new orders this year from Statoil, the leading operator on the Norwegian continental shelf in the North Sea. Oil Event News Oil Product News Working closely with Axflow, the largest distributor of positive displacement pumps in Europe, Amarinth followed an initial order from Statoil that was successfully Oil Recruitment News completed earlier in the year with a second order to supply pumps for use in the Oil Software News Oseberg oil field on a very tight 24 week delivery. Amarinth then quickly secured a third order from Statoil to supply close coupled motor pumps in 316 stainless steel Petrochemical News with API 682 seal support systems for use in the Gullfaks field, this time on a Pipeline News challenging 30 week delivery.
    [Show full text]
  • Oseberg Area
    This book is a work of reference which provides an easily understandable Oil and gas fields in n survey of all the areas, fields and installations on the Norwegian continental shelf. It also describes developments in these waters since the 1960s, Oil and gas fields including why Norway was able to become an oil nation, the role of government and the rapid technological progress made. In addition, the book serves as an industrial heritage plan for the oil in nOrway and gas industry. This provides the basis for prioritising offshore installations worth designating as national monuments and which should be documented. industrial heritage plan The book will help to raise awareness of the oil industry as industrial heritage and the management of these assets. Harald Tønnesen (b 1947) is curator of the O Norwegian Petroleum Museum. rway rway With an engineering degree from the University of Newcastle-upon- Tyne, he has broad experience in the petroleum industry. He began his career at Robertson Radio i Elektro before moving to ndustrial Rogaland Research, and was head of research at Esso Norge AS before joining the museum. h eritage plan Gunleiv Hadland (b 1971) is a researcher at the Norwegian Petroleum Museum. He has an MA, majoring in history, from the University of Bergen and wrote his thesis on hydropower ????????? development and nature conser- Photo: Øyvind Hagen/Statoil vation. He has earlier worked on projects for the Norwegian Museum of Science and Technology, the ????????? Norwegian Water Resources and Photo: Øyvind Hagen/Statoil Energy Directorate (NVE) and others. 139 ThE OsEbERg aREa The Oseberg area lies about 140 kilometres north- west of Bergen and embraces Oseberg, Oseberg West, Oseberg west flank, Oseberg Delta, Oseberg East and Oseberg South as well as Tune and Brage.
    [Show full text]