BIOCHEMISTRY REVIEW Overview of Biomolecules

Total Page:16

File Type:pdf, Size:1020Kb

BIOCHEMISTRY REVIEW Overview of Biomolecules ] BIOCHEMISTRY REVIEW Overview of Biomolecules Deborah W. Louda, Associate Professor Charles E. Schmidt College of Medicine Florida Atlantic University Copyright 2012 Table of Contents Chapter 1: Introduction to Biomolecules…………………………………………………1 Chapter 2: Amino Acids………………………………………………………………….. 4 Chapter 3: Peptides……………………………………………………………………….21 Chapter 4: Protein Sequence……………………………………………………………25 Chapter 5: Protein Conformation………………………………………………………..34 Chapter 6: Enzymes……………………………………………………………………....44 Chapter 7: Carbohydrates………………………………………………………………..57 Chapter 8: Lipids…………………………………………………………………………..84 Chapter 9: Nucleotides…………………………………………………………………...98 Chapter 10: Nucleic Acids………………………………………………………………108 Chapter 11: DNA Replication…………………………………………………………..118 Chapter 12: Transcription……………………………………………………………….135 Chapter 13: Protein Synthesis………………………………………………………….144 Accompanying power point slides are indicated by (PP #). Chapter 1: Introduction to Biomolecules Biochemistry is the study of the chemistry of cells and organisms. Thus it is concerned with the types of molecules found in biological systems, their structure, and their chemical properties. Biochemistry also deals with the function of these molecules, how they interact, and what reactions they undergo. I. Properties of Biomolecules A. General Properties Biomolecules are organic molecules, not fundamentally different from other, typical organic molecules. They are the same types of molecules, react in the same ways, and obey the same physical laws. B. Composition and Structure Biomolecules contain mainly carbon, which behaves as it always does in organic compounds, forming 4 bonds, usually with a tetrahedral arrangement. (PP 2) The carbon skeleton can be linear, branched, cyclic, or aromatic. Other important elements are H, O, N, P and S. About 30 elements are required by biological systems, including iodine and many metals, though most of these are needed in only trace amounts. (PP 3) Biomolecules contain the same types of functional groups as do organic molecules, including hydroxyl groups, amino groups, carbonyl groups, carboxyl groups, etc. (PP 4-5) However, many biomolecules are polyfunctional, containing two or more different functional groups which can influence each other’s reactivity. (PP 6) Biomolecules tend to be larger than typical organic molecules. Small biomolecules have molecular weights over 100, while most biomolecules have molecular weights in the thousands, millions, or even billions. Because of their large size, the majority of biomolecules have specific 3-dimensional shapes. The atoms of a biomolecule are arranged in space in a precise way, and proper arrangement is usually needed for proper function. The 3-dimensional shape is maintained by numerous non-covalent bonds between atoms in the molecule. (PP 7) Because of the weak nature of most non- covalent bonds and because of interactions between the biomolecule and the solvent, the biomolecule’s structure is flexible rather than static. C. Stereochemistry As is common with organic compounds, many biomolecules exhibit stereochemistry. When four different types of atoms or functional groups are bonded to one carbon atom, the carbon is stereogenic (or chiral or asymmetric) and the 1 compound can exist in two different isomeric forms that have different configurations in space. The two configurations are mirror images of each other and are not superimposable. (PP 8) When two compounds are mirror images of each other they are called enantiomers or optical isomers, a subclass of stereoisomers. Enantiomers usually have identical chemical properties, and differ only in the way they rotate plane- polarized light or interact with other chiral compounds. Most biomolecules have several or many asymmetric carbons and so may have many diastereomers, a subclass of stereoisomers that are non-mirror images and have different properties. (PP 9) Stereochemistry is important because biological systems usually use only one specific isomer of a given compound. II. Types of Biomolecules Biomolecules can be divided into several major classes and a few minor classes. A. Amino Acids and Proteins Amino acids are relatively small molecules with molecular weights around 100-200. (PP 10) They are used to produce energy, to synthesize other molecules like hormones, and to make proteins. Proteins are polymers of amino acids. (PP 11) They fold into specific shapes and range in molecular weight from several thousand to over a million. (PP 12) Proteins function as enzymes (which catalyze reactions), structural elements, transport molecules, antibodies, etc. B. Carbohydrates (sugars & starches) The smallest carbohydrates are the monosaccharides with molecular weights of around 100-200. (PP 13) They are a major source of energy for biological systems. Polysaccharides are polymers of monosaccharides with molecular weights often in the millions. (PP 14) Polysaccharides also have definite shapes and serve as structural elements or as stored metabolic energy. (PP 15) C. Lipids (fats & oils) Lipids are relatively small water-insoluble molecules with molecular weights of up to 750-1500. (PP 16) Because they are defined by their water-insolubility, they are chemically more diverse than the other classes of biomolecules, with about half a dozen major types. Lipids are used for energy production and storage, hormones, structural elements of cell membranes, and vitamins. Lipids do not polymerize to form macromolecules, but they can aggregate non-covalently to form very large structures. (PP 17) 2 D. Nucleotides and Nucleic Acids Nucleotides are relatively small molecules with molecular weights in the hundreds. (PP 18) They function in transferring energy and in helping enzymes to catalyze reactions. Nucleic acids (DNA and RNA) are large polymers of nucleotides, with molecular weights up into the billions. (PP 19) They form structures like the double helix, and they function in storing, transmitting, and utilizing genetic information. (PP 20) E. Small Organic Molecules In addition to the major classes of biomolecules, there are many relatively small organic molecules required by cells for very specific functions; these molecules do not fall neatly into one of the above major categories. These molecules can be precursors of biomolecules that help enzymes function (often related to vitamins), or can be intermediates in metabolic pathways, etc. (PP 21) F. Inorganic Ions Though not actually biomolecules, many inorganic ions are required by cells, often in trace amounts. These include calcium, sodium, iron, magnesium, potassium, chlorine, etc. Inorganic ions perform a variety of functions such as structural elements (calcium in bone), regulation of osmotic pressure and transport (sodium), and components of proteins and enzymes (iron). G. Combinations of Biomolecules Sometimes one biomolecule can contain components from two of the major classes, such as a lipoprotein (lipid plus protein) or a glycoprotein (carbohydrate plus protein). 3 Chapter 2: Amino Acids I. Introduction The major function of amino acids is to act as the building blocks of proteins. Amino acids themselves can be used by the cell to produce energy and are the starting point for making many nitrogen-containing compounds. II. General Structure A. Formula As the name implies, amino acids contain two functional groups, a carboxylic acid group and an amino group. The common amino acids are α-amino acids where both functional groups are attached to the same carbon atom. NH2 │ R — C — COOH │ H Also attached to the central carbon are a hydrogen atom and an R group, which is different in each amino acid. The form above is called the non-ionic form. Both the amino group and carboxyl group are capable of ionizing. At neutral pH, which is normal for biological systems, both groups are ionized. (PP 2) + NH3 │ R — C — COO¯ │ H This doubly ionized form is called the zwitterion (hybrid ion with one positive charge and one negative charge) and overall has a zero charge. (PP 3-6) Crystalline amino acids have this structure, and the electrostatic forces between molecules explain the higher-than-expected melting points of amino acids. 4 B. Stereochemistry If the R group is something other than a hydrogen atom, then the central carbon is asymmetric and there will be two enantiomers (mirror images). (PP 7) The compound glyceraldehyde is used as a reference compound for distinguishing stereoisomers. (PP 8) CHO CHO │ │ HO ― C ― H H ― C ― OH │ │ CH2OH CH2OH L – glyceraldehyde D - glyceraldehyde The prefixes L and D stand for levo (rotates light to left) and dextro (rotates light to right). For amino acids COOH COOH │ │ NH2 ― C ― H H ― C ― NH2 │ │ R R L - amino acid D - amino acid It is the L-amino acids that are biologically important, with very few exceptions. Amino acids found in proteins are normally L-isomers. C. Classes There are 20 common or major amino acids that are found in proteins. They are divided into groups based on the nature of the R group. However, not every amino acid falls neatly into a category, so there can be variations in how amino acids are classified. For instance, the glycine R-group is sometimes classified as hydrophilic and sometimes as hydrophobic. Each amino acid can be designated by a three-letter abbreviation, or by a one-letter abbreviation. (PP 9) 1. Nonpolar aliphatic R groups The R group of these amino acids is hydrophobic, but not the entire amino acid. The R groups are mainly hydrocarbon in nature. (PP 10) 5 COO¯ │ + NH3 ― C ― H │ Alanine - Ala, A CH3 COO¯
Recommended publications
  • Biomolecules
    CHAPTER 3 Biomolecules 3.1 Carbohydrates In the previous chapter you have learnt about the cell and 3.2 Fatty Acids and its organelles. Each organelle has distinct structure and Lipids therefore performs different function. For example, cell membrane is made up of lipids and proteins. Cell wall is 3.3 Amino Acids made up of carbohydrates. Chromosomes are made up of 3.4 Protein Structure protein and nucleic acid, i.e., DNA and ribosomes are made 3.5 Nucleic Acids up of protein and nucleic acids, i.e., RNA. These ingredients of cellular organelles are also called macromolecules or biomolecules. There are four major types of biomolecules— carbohydrates, proteins, lipids and nucleic acids. Apart from being structural entities of the cell, these biomolecules play important functions in cellular processes. In this chapter you will study the structure and functions of these biomolecules. 3.1 CARBOHYDRATES Carbohydrates are one of the most abundant classes of biomolecules in nature and found widely distributed in all life forms. Chemically, they are aldehyde and ketone derivatives of the polyhydric alcohols. Major role of carbohydrates in living organisms is to function as a primary source of energy. These molecules also serve as energy stores, 2021-22 Chapter 3 Carbohydrade Final 30.018.2018.indd 50 11/14/2019 10:11:16 AM 51 BIOMOLECULES metabolic intermediates, and one of the major components of bacterial and plant cell wall. Also, these are part of DNA and RNA, which you will study later in this chapter. The cell walls of bacteria and plants are made up of polymers of carbohydrates.
    [Show full text]
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Bacterial Cell Membrane
    BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins).
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Effects of Stressors on Differential Gene Expression And
    EFFECTS OF STRESSORS ON DIFFERENTIAL GENE EXPRESSION AND SECONDARY METABOLITES BY AXINELLA CORRUGATA by Jennifer Grima A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 2013 ACKNOWLEDGEMENTS This thesis was made possible by the help and support of my mentors and friends. Without their guidance and expertise, I would not have been able to accomplish all that I have. Their belief and encouragement in my efforts have motivated and inspired me along through this journey and into a new era in my life. First and foremost, I am grateful to Dr. Shirley Pomponi for taking on the role as my advisor and giving me the opportunity to experience life as a researcher. Not only has she guided me in my scientific studies, she has become a wonderful, lifelong friend. Dr. Pomponi and Dr. Amy Wright have also provided financial support that enabled me to conduct the research and complete this thesis. I would also like to acknowledge Dr. Amy Wright for her willingness to tender advice on all things chemistry related as well as providing me with the space, equipment, and supplies to conduct the chemical analyses. I am grateful to Dr. Esther Guzman who not only served as a committee member, but has also been readily available to help me in any endeavor, whether it be research or personal related. She is truly one of kind with her breadth of knowledge in research and her loyal and caring character.
    [Show full text]
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • Sugars As the Source of Energized Carbon for Abiogenesis
    Astrobiology Science Conference 2010 (2010) 5095.pdf SUGARS AS THE SOURCE OF ENERGIZED CARBON FOR ABIOGENESIS. A. L. Weber, SETI Institute, NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035-1000, [email protected] Abstract: As shown in Figure 1, abiogenesis has sev- eral requirements: (A) a source of organic substrates and chemical energy that drives the synthesis of (B) useful small molecules (ammonia, monomers, metabo- lites, energy molecules), and (C) a second synthetic processs that yields large replicating and catalytic polymers that control (D) the growth and maintenance of a primitive protocell. Furthermore, the required chemical energy must be sustained and effectively coupled to individual reactions to drive biosynthesis at a rate that counters chemical degradation. Energy coupling would have been especially difficult during the origin of life before the development of powerful enzyme catalysts with 3-D active sites. To solve this energy coupling problem we have investigated abio- genesis using sugar substrates whose energized carbon groups drive spontaneous synthetic self-transformation reactions that yield: biometabolites, catalytic mole- cules, energy-rich thioesters, amino acids, plausible alternative nucleobases and cell-like microstructures [1-8]. Recently, we demonstrated that sugars drive the synthesis of ammonia from nitrite [9]. The ability of sugars to drive ammonia synthesis provides a way to generate ammonia at microscopic sites of sugar-based origins processes, thereby eliminating the need for a planet-wide source of photochemically unstable am- monia. Figure 1. Major Synthetic Processes of Abiogenesis. [1] Weber A. L. (1998) Orig. Life Evol. Biosph., 28, 259-270. [2] Weber A.
    [Show full text]
  • AP Biology Names___Biomolecule Stations Per
    AP Biology Names____________________________________ Biomolecule Stations Per.______________ In this two-day activity, you will move through several different stations and learn about the four macromolecules in the biological world. Day 1: Modeling Carbohydrates and Lipids 1. Use the 3d-printed models to answer the questions for carbohydrates and lipids. NOTE: Blank corners indicate “carbon” atoms. Glucose Fructose Glycerol Acetic Acid Butyric Acid Caproic Acid Day 2: Modeling Proteins 1. Using the Amino Acid Sidechain list, organize the sidechains on the circular magnetic mat according to their name or properties. 2. Examine the side chains and their positions on the circle. Describe your observations on your answer sheet by answering questions #1-6 under Modeling Proteins. 3. Now you have explored the chemical properties and atomic composition of each sidechain, you are ready to predict how proteins spontaneously fold up into their 3D shapes. Answer questions #7-8 on your answer sheet. 4. Unwind the yellow tube. Notice the blue and red end caps. The blue end cap represents the N- terminus (the beginning) and the red end cap represents the C-terminus (the end) of the protein. 5. Select 15 metal U-shaped clips from your kit. Beginning at the N-terminus, place the 15 u-clips three inches apart on the tube. 6. Select methionine from the mat and place it on the clip closest to the blue end cap. Choose six hydrophobic sidechains, two acidic sidechains, two basic sidechains, two cysteine sidechains, and two other polar sidechains. Place them in any order you choose on your tubes u-clips.
    [Show full text]
  • Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
    UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments.
    [Show full text]
  • 48 3-1-4. Reactions Using Mutant FSA A129S Another Mutant Enzyme
    Results _ 3-1-4. Reactions using mutant FSA A129S Another mutant enzyme, A129S, which has serine at 129th residue instead of alanine (Fig.3-11a), has high potential to catalyze the reactions using DHA as a donor substrate. Virtually, the kcat/Km value for DHA is more than 12 fold of that of WT (Schürmann, 2001). This implies that larger amounts of products can be acquired with A129S than with WT, or unfavorable reactions with WT may be accomplished with the mutant enzyme. Firstly, FSA A129S was produced in DH5α with pUC18 plasmid vector and purified with same method as WT was done (Fig.3-11b, Table 3-8). This mutant enzyme was overexpressed well and a strong band corresponding to FSA was seen on SDS-PAGE gel (as 10~15% of total protein in crude extract). In addition, this mutant enzyme held the stability against high temperature. Thus, a heat treatment step was part of the purification protocol. However, protein solution obtained from hydroxyapatite column of the final purification step showed still a few extra protein bands on SDS-PAGE gel (Fig.3-11b). Although it contained those extra proteins, the purity appeared to be more than 90% on the gel and the specific activity was quite high enough to assay the catalytic ability of the enzyme for several substrates. Indeed, even crude extract showed higher specific activity than purified WT had (Table 3-8). Three reactions (scheme 3-1) were probed to assay catalytic ability of both FSA WT and A129S. Dihydroxyacetone (DHA) or hydroxyacetone (HA) were used as donor substrates, and formaldehyde or glycolaldehyde as acceptor.
    [Show full text]
  • Secretin and Autism: a Clue but Not a Cure
    SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear.
    [Show full text]
  • Synthetic Polynucleotides Synthetische Polynukleotide Polynucleotides Synthetiques
    Europäisches Patentamt *EP000960192B1* (19) European Patent Office Office européen des brevets (11) EP 0 960 192 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12N 15/53, of the grant of the patent: A61K 38/43, C12N 9/06 09.11.2005 Bulletin 2005/45 (86) International application number: (21) Application number: 97933592.4 PCT/AU1997/000505 (22) Date of filing: 11.08.1997 (87) International publication number: WO 1998/006830 (19.02.1998 Gazette 1998/07) (54) SYNTHETIC POLYNUCLEOTIDES SYNTHETISCHE POLYNUKLEOTIDE POLYNUCLEOTIDES SYNTHETIQUES (84) Designated Contracting States: • SHARP P M ET AL: "The codon Adaptation AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Index--a measure of directional synonymous NL PT SE codon usage bias, and its potential applications." NUCLEIC ACIDS RESEARCH. (30) Priority: 09.08.1996 AU PO156596 ENGLAND 11 FEB 1987, vol. 15, no. 3, 11 February 1987 (1987-02-11), pages 1281-1295, (43) Date of publication of application: XP001122356 ISSN: 0305-1048 01.12.1999 Bulletin 1999/48 • DATABASE SWISSPROT [Online] 1 December 1992 (1992-12-01) MARIANI T.J. ET AL.: (60) Divisional application: "Protein-lysine 6-oxidase precursor (EC 05000327.6 1.4.3.13) (Lysyl oxidase)." Database accession no. P28300 XP002229125 (73) Proprietor: THE UNIVERSITY OF SYDNEY • DATABASE EMBL [Online] EBI; 16 May 1992 Sydney, New South Wales 2006 (AU) (1992-05-16) MARIANI T.J. ET AL.: "Human lysyl oxidase (LOX) mRNA, complete cds." Database (72) Inventor: WEISS, Anthony, Steven accession no. M94054 XP002229126 Randwick, NSW 2031 (AU) • DATABASE EMBL [Online] EBI; 26 November 1993 (1993-11-26) HAMALAINEN E.R.
    [Show full text]