A Phylogenetic and Biogeographic Study of the Genus Lilaeopsis (Apiaceae Tribe Oenantheae) Author(S) :Tiffany S

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogenetic and Biogeographic Study of the Genus Lilaeopsis (Apiaceae Tribe Oenantheae) Author(S) :Tiffany S A Phylogenetic and Biogeographic Study of the Genus Lilaeopsis (Apiaceae Tribe Oenantheae) Author(s) :Tiffany S. Bone, Stephen R. Downie, James M. Affolter, and Krzysztof Spalik Source: Systematic Botany, 36(3):789-805. 2011. Published By: The American Society of Plant Taxonomists URL: http://www.bioone.org/doi/full/10.1600/036364411X583745 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Systematic Botany (2011), 36(3): pp. 789–805 © Copyright 2011 by the American Society of Plant Taxonomists DOI 10.1600/036364411X583745 A Phylogenetic and Biogeographic Study of the Genus Lilaeopsis (Apiaceae tribe Oenantheae) Tiffany S. Bone , 1,4 Stephen R. Downie ,1, 5 James M. Affolter , 2 and Krzysztof Spalik 3 1 Department of Plant Biology, University of Illinois at Urbana-Champaign, Illinois 61801 U. S. A. 2 College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia 30605 U.S.A. 3 Department of Plant Systematics and Geography, Faculty of Biology, University of Warsaw, Warsaw, Poland. 4 Present address: USDA, NCAUR, BFPM, 1815 North University, Office 3133, Peoria, Illinois 61604 U. S. A. 5 Author for correspondence ([email protected]) Communicating Editor: Allan J. Bornstein Abstract— The genus Lilaeopsis (Apiaceae subfamily Apioideae) comprises 15 species and exhibits both American amphitropic and amphi- antarctic patterns of disjunction. The group is difficult taxonomically because of its simplified habit, phenotypic plasticity of vegetative charac- ters, and extensive variation in fruit characters. Sequence data from the nrDNA ITS and cpDNA rps16 intron and rps16-trnK intergenic spacer regions were obtained for 60 accessions, representing 13 species of Lilaeopsis and five closely related outgroup genera from the North American Endemics clade of tribe Oenantheae. These molecular data were subjected to maximum parsimony, Bayesian inference, and dispersal-vicariance analyses in an effort to reconstruct evolutionary relationships and infer biogeographic scenarios. The results suggest that: (1) L. macloviana , L. masonii , and L. occidentalis , distributed in western South America and western North America, collectively represent a single, polymorphic species of amphitropic distribution; (2) The Australasian species L. brisbanica, L. novae-zelandiae, L. polyantha , and L. ruthiana comprise a well- supported clade. However, L. novae-zelandiae is not monophyletic, but may be rendered so by the inclusion of all Australasian taxa into one polymorphic species; (3) L. mauritiana from Mauritius is closely related to L. brasiliensis from South America and may even be subsumed under the latter pending further investigation; and (4) Lilaeopsis probably originated in South America following a dispersal of its ancestor from North America. A minimum of seven dispersal events is necessary to explain its present-day distribution, including one dispersal from South America to Australia or New Zealand, two dispersals between Australia and New Zealand, and three dispersals from South America to North America. Keywords— Amphitropic disjunction , Apioideae , cpDNA , ITS , phylogeny. The genus Lilaeopsis Greene (Apiaceae subfamily Apioideae) nized by Hill (1928) were consolidated within the single poly- consists of small, creeping, rhizomatous, perennial herbs morphic taxon L. novae-zelandiae ; and three additional species occupying damp, marshy, or truly aquatic habitats, with fif- from Australia were interpreted as intergrading forms of teen species and four infraspecific taxa currently recognized L. polyantha . In general, vegetative characters were deemed of ( Table 1 ). The group is difficult taxonomically because the little value for distinguishing among species, and fruit char- plants have a simplified and generally similar vegetative acters of the three polymorphic species were observed to be morphology. In all species the leaves are linear, hollow, and extremely variable, sometimes showing overlapping varia- transversely septate, being derived from the rachis-axis of a tion between species. To confound matters, specimens are compound leaf, with the septae corresponding to the posi- often impossible to identify to species without mature fruits, tions of pinnae insertion in pinnatifid leaves ( Kaplan 1970 ; so in some instances geography must be used to circumscribe Charlton 1992 ). These rachis leaves are different from those them. As stated by Affolter (1985) , “Morphological simplifi- typical of other umbellifers (such as carrot, dill, parsnip, and cation has reduced the number of characters available to the celery) where they are generally pinnately compound and taxonomist; phenotypic plasticity has diminished the utility dissected. of the few characters which remain.” Further consolidation The taxonomic history of Lilaeopsis is detailed by Affolter of species was also considered by Affolter (1985) , but “would (1985) and underscores the problems in classifying plants carry the process a step too far and would obscure real dif- having a reduced vegetative morphology. Affinities to both ferences that exist among the South American, New Zealand, Araliaceae (i.e. Hydrocotyle L.) and Apiaceae have been pro- and Australian populations.” posed, with the phylogenetic position and monophyly of Molecular systematic studies indicate that Lilaeopsis is a Lilaeopsis only confirmed recently ( Downie et al. 2000 , 2001 , member of Apiaceae tribe Oenantheae ( Downie et al. 2000 ). 2008 ; Petersen et al. 2002 ). Through extensive field inves- While no unique morphological synapomorphy supports the tigations, cultivation of living material of most species in a monophyly of Oenantheae ( Petersen et al. 2002 ), the plants do common-garden coupled with the growth of many collec- share certain traits, such as glabrous stems and leaves, clus- tions under different environmental treatments, and sta- ters of fibrous or tuberous-thickened roots, globose to broadly tistical analyses, Affolter (1985) showed that the shape and ovate spongy-thickened fruits, and a preference for wet habi- size of the rachis leaves of Lilaeopsis are readily modified in tats ( Downie et al. 2008 ). The “spongy cells” within the fruits response to various degrees of submergence and light inten- are storage tracheids, nearly isodiametric in form and bigger sity. Fruit characters, so important in umbellifer classifica- in diameter than typical tracheids. They enhance buoyancy tion, continued to receive emphasis, but recognition of their and facilitate dispersal in aquatic environments when the extensive variation in some taxa resulted in merging many fruits dry out and these cells become filled with air ( Briquet previously recognized species. As examples, six previously 1897 ; Hill 1927 ; Affolter 1985 ). Like Lilaeopsis , some plants of described species and several infraspecific taxa were consol- the tribe possess rachis or rachis-like leaves, such as Oxypolis idated within the single polymorphic species L. macloviana Raf., Ptilimnium Raf., Cynosciadium DC., and Limnosciadium from South America; the three New Zealand species recog- Mathias & Constance. The genus Lilaeopsis is unequivocally 789 790 SYSTEMATIC BOTANY [Volume 36 Table 1. Lilaeopsis taxa and their geographic distributions (after of Lilaeopsis have also been collected from the Kerguelen Affolter 1985 , Bean 1997 , and Petersen and Affolter 1999 ). Asterisks denote Archipelago ( Affolter 1985 ). taxa not included in the molecular analysis. Both northern and southern hemispheric origins for Taxon Distribution Lilaeopsis have been suggested. Dawson (1971) , for example, indicated that Lilaeopsis probably originated in the northern L. attenuata (Hook. & Arn.) Fern. Argentina subsp. attenuata hemisphere, whereas Hill (1929) postulated an Antarctic ori- L. attenuata subsp. ulei (Pérez-Mor.) Brazil gin, with two major subsequent migration routes northward Affolter* (one route leading to New Zealand and Australia, and the L. brasiliensis (Glaz.) Affolter Argentina, Brazil, Paraguay other leading into and through the Andes of South America L. brisbanica A. R. Bean Australia into North America). Raynal (1977) described Lilaeopsis as a L. carolinensis J. M. Coult. & Rose U. S. A. (Atlantic and Gulf coasts) “genuinely Gondwanian genus.” The southern hemisphere South America (Argentina, Brazil, Paraguay, Uruguay) has traditionally been considered to exhibit a vicariant his- Europe (Portugal, Spain) tory, with the fragmentation of Gondwana leading to the L. chinensis (L.) Kuntze Canada and U. S. A. (Atlantic and division of its ancestral biota ( Sanmartín and Ronquist 2004 ). Gulf coasts) However, recent biogeographic
Recommended publications
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • United States Department of the Interior U.S. Fish and Wildlife
    United States Department of the Interior U.S. Fish and Wildlife Service 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021 Telephone: (602) 242-0210 FAX: (602) 242-2513 AESO/SE 02-21-02-F-0157 January 16, 2004 Ms. Sue Kozacek Acting Forest Supervisor Coronado National Forest 300 West Congress, 6th Floor Tucson, Arizona 85701 Dear Ms. Kozacek: This letter constitutes the U.S. Fish and Wildlife’s Service biological opinion, based on our review of the wildfire suppression actions associated with the Ryan Fire located on the Coronado National Forest, Santa Cruz County, Arizona. This biological opinion analyzes the project’s effect on Sonora tiger salamander (Ambystoma tigrinum stebbinsi) (STS) and Chiricahua leopard frog (Rana chiricahuensis) (CLF) in accordance with section 7 of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.). We received your February 20, 2003 request for formal consultation on February 21, 2003. In that request, you determined that suppression activities associated with the Ryan fire likely adversely affected CLF and STS. You have also requested our concurrence that suppression activities may have affected, but did not likely adversely affect, lesser long-nosed bat (Leptonycteris curasoae yerbabuenae), Huachuca water umbel (Lilaeopsis schaffneriana ssp. recurva), Canelo Hills ladies’ tresses (Spiranthes delitescens), and Gila topminnow (Poeciliopsis occidentalis occidentalis). Our concurrences are provided in Appendix A. This biological opinion is based on information provided in the January 28, 2003 biological assessment (BA). Literature cited in this draft biological opinion is not a complete bibliography of all literature available on the species of concern, wildfire suppression and its effects, or on other subjects considered in this opinion.
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Biological Opinion on USFS Aerial Application of Fire Retardants on NFS Lands
    2011 USFWS Biological Opinion on USFS Aerial Application of Fire Retardants on NFS Lands BIOLOGICAL OPINION Effects to Listed Species from U.S. Forest Service Aerial Application of Fire Retardants on National Forest System Lands Consultation Conducted by U.S. Fish and Wildlife Service (Regions 1, 2, 3, 4, 5, 6, and 8) December 6, 2011 Return to Table of Contents 1 | P a g e 2011 USFWS Biological Opinion on USFS Aerial Application of Fire Retardants on NFS Lands Table of Contents Table of Figures ............................................................................................................................................. 8 Introduction ................................................................................................................................................ 10 Consultation History ................................................................................................................................... 11 Species not likely to be adversely affected ................................................................................................. 17 BIOLOGICAL OPINION ................................................................................................................................. 27 Description of the Proposed Action ........................................................................................................ 27 Aerial Application of Fire Retardant Direction .................................................................................... 28 Reporting and Monitoring
    [Show full text]
  • Amphitropic Amphiantarctic Disjunctions in Apiaceae Subfamily
    Journal of Biogeography (J. Biogeogr.) (2010) 37, 1977–1994 ORIGINAL Amphitropic amphiantarctic disjunctions ARTICLE in Apiaceae subfamily Apioideae Krzysztof Spalik1*, Marcin Piwczyn´ ski2, Clark A. Danderson3, Renata Kurzyna-Młynik1, Tiffany S. Bone3 and Stephen R. Downie3 1Department of Plant Systematics and ABSTRACT Geography, Faculty of Biology, Institute of Aim Four genera of the plant family Apiaceae subfamily Apioideae – Apium, Botany, University of Warsaw, Warszawa, Poland, 2Department of Plant Taxonomy and Chaerophyllum, Daucus and Lilaeopsis – are characterized by amphitropic and Geography, Institute of Ecology and amphiantarctic distribution patterns, and in Australasia the subfamily is also Environment Protection, Nicolaus Copernicus represented by the tribe Aciphylleae. We infer the molecular ages of achieving University, Torun´, Poland, 3Department of amphitropic distribution for these lineages, reconstruct the biogeographical Plant Biology, University of Illinois at Urbana- histories of Apium, Chaerophyllum, Daucus and Lilaeopsis, and identify the sister Champaign, Urbana, IL, USA group of Aciphylleae. Location Worldwide, with an emphasis on South America and Australasia. Methods Divergence times were estimated employing a Bayesian approach (beast) with fossil pollen of basal apioids as calibration points and using a data set of nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) sequences from 284 accessions of Apioideae. Additionally, maximum-likelihood analyses were performed for data subsets comprising Apium, Daucus and Lilaeopsis. For Chaerophyllum, maximum-likelihood and beast analyses were carried out using combined chloroplast DNA and ITS data. Biogeographical scenarios were inferred using diva and lagrange. Results The sister group to Aciphylleae is the Sino-Himalayan Acronema clade and the divergence between these two lineages is dated at 34.8 Ma, whereas the radiation of Aciphylleae started 11.0 Ma.
    [Show full text]
  • Circumscription of Apiaceae Tribe Oenantheae
    South African Journal of Botany 2004, 70(3): 393–406 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Circumscription of Apiaceae tribe Oenantheae TM Hardway1, K Spalik2, MF Watson3, DS Katz-Downie1 and SR Downie1* 1 Department of Plant Biology, University of Illinois, Urbana 61801, United States of America 2 Department of Plant Systematics and Geography, Warsaw University, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland 3 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom * Corresponding author, email: [email protected] Received 18 August 2003, accepted in revised form 17 November 2003 Previous molecular systematic investigations into the Sium and Trepocarpus. Relationships inferred from higher-level relationships of Apiaceae subfamily phylogenetic analyses of nuclear rDNA ITS sequences Apioideae have revealed a strongly supported clade from 64 accessions representing all 17 genera reveal recognised as tribe Oenantheae Dumort. These plants that four genera are not monophyletic. Bifora and may have clusters of fibrous or tuberous-thickened Cryptotaenia have members that fall outside of the tribe; roots, corky-thickened fruits, and other adaptations for Berula and Sium each comprise two or more lineages existence in wet or aquatic habitats. In some species, within Oenantheae. The St Helena endemics, Sium the leaves may be finely dissected or linear-septate and bracteatum and S. burchellii, ally with African Berula much reduced. We have initiated collaborative studies erecta; this clade is sister to the African endemic to produce a comprehensive estimate of phylogeny of species Sium repandum and Afrocarum imbricatum, the tribe, but such investigations are thwarted because and this entire group is allied closely with north tem- information on the composition of the tribe is lacking.
    [Show full text]
  • Endangered Species Series No. 4 Petition to List The
    . 1 OC t,(.3 t r a-k. PETITION TO LIST THE HUACHUCA WATER UMBELL Lilaeopsis schaffneriana subspecies recurva AS A FEDERALLY ENDANGERED SPECIES May 31, 1993 GREATER GILA BIODIVERSITY PROJECT ENDANGERED SPECIES SERIES NO. 4 May 31, 1993 Mr. Bruce Babbitt Secretary of the Interior Office of the Secretary Department of the Interior 18th and "C" Street, N.W. Washington, D.C. 20240 Kieran Suckling, the Greater Gila Biodiversity Project, the Southwest Center For Biological Diversity, and the Biodiversity Legal Foundation, hereby formally petition to list the Huachuca Water Umbell (Lilaeopsis schaffneriana subspecies recurva) as endangered pursuant to the Endangered Species Act, 16 U.S.C. 1531 et seq. (hereafter referred to as "ESA"). This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grants interested parties the right to petition for issue of a rule from the Assistant Secretary of the Interior. Petitioners also request that Critical Habitat be designated concurrent with the listing, pursuant to 50 CFR 424.12, and pursuant to the Administrative Procedures Act (5 U.S.C. 553). Petitioners understand that this petition action sets in motion a specific process placing definite response requirements on the U.S. Fish and Wildlife Service and very specific time constraints upon those responses. Petitioners Kieran Suckling is a Doctoral Candidate, endangered species field researcher, and conservationist. He serves as the Director of the Greater Gila Biodiversity Project and has extensively studied the status and natural history of Lilaeopsis schaffneriana subspecies recurva. The Greater Gila Biodiversity Project is a non-profit public interest organization created to protect imperiled species and habitats within the Greater Gila Ecosystem of southwest New Mexico and eastern Arizona.
    [Show full text]
  • Arizona Rare Plant Advisory Group Sensitive Plant List -June 2014
    ARIZONA RARE PLANT ADVISORY GROUP SENSITIVE PLANT LIST -JUNE 2014 •.. -e 'I"': ~ ~ •.. ·s o 0 .g o rn u rn '•".. ..>: ::s ~ ~ ~ 0"' tU I': ~ ~ Z ..•.. ~ '" u ::... 0 ~ E 0 u -; •.. is '5 rn 0 0 ~ ;::l ~ "g u d iL< ..>: ~ 0 •.. ~ s •.... "B .. § 0 ; 0 ~ ~ U ~ il< < ~ E-< ~ VERY HIGH CONCERN Agave delamateri Hodgs. & Slauson Asparagaceae w.e L Tonto Basin Agave 7 7 7 c Asparagaceae Agave phillipsiana w.e Hodgs wand Canvon Centurv Plant 7 7 7 nc Aotragalus crt!mnophylax uar: crt!mnophylax Bameby Fabaceae Sentrv Milk-vetch 7 8 7.5 c AOfragalus holmgreniomm Bameby Fabaceae Holmgren (Paradox) Milk-vetch 7 7 7 c Orobanchaceae Castilleja mogollonica PeJ2lJell Mogollon Paintbrush 7 8 7.5 Lv c Apiaceae Eryngium sparganophyllum HemsL Ribbonleaf Button Snakeroot 6 8 7 v? nc Lotus meamsii var. equisolensis].L Anderson Fabaccae Horseshoe Deer Vetch 6 8 7 nc Cactaceae Pediacactus brat!Ji L Benson Brady Pincushion Cactus 7 7 7 c Boraginaceae Phacelia cronquistiana S.L Wel,.h Cronquist's Phacelia 7 8 7.5 nc PotClltil1a arizona Greene Rosaceae Arizone Cinquefoil 6 8 7 nc Sphaeralcea gierischii N.D. Atwood & S.L Welsh Malvaceae Gierisch globemallow 7 7 7 nc HIGH CONCERN Ranunculaceae Actaea arizonica (S. Watson) J. Compton Arizona Buzbane 6 6 6 c Agave murpheyi F. Gibson Asparagaeeae Hohokam Agave 6 6 6 c Asnaragaceae Agave yavapaiensis Yavapai Agave 6 7 6.5 ne Aletes macdougalli ssp. macdougaftiJM. Coulto & Rose Apiaceae MacDougal's Indian parsley 6 6 6 nc Alide/la cliffordii J.M. Potter Polernoniaceae Clifford's Gilia 5 7 6 nc Antic/ea vaginata Rydb.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Aquatic Plants Technical Assistance Program 1998 Activity Report Acknowledgments
    Aquatic Plants Technical Assistance Program 1998 Activity Report June 1999 Publication No. 99-328 For additional copies of this report, contact: Department of Ecology Publications P.O. Box 47600 Olympia, WA 98504-7600 Telephone: (360) 407-7472 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status, or sexual orientation. For more information or if you have special accommodation needs, please contact Michelle Ideker at (360) 407-6677. Ecology Headquarters telecommunications device for the deaf (TDD) number is (360) 407-6006. Ecology Regional Office TDD numbers are as follows: SWRO (TDD) (360) 407-6306 NWRO (TDD) (206) 649-4259 CRO (TDD) (509) 454-7673 ERO (TDD) (509) 458-2055 Aquatic Plants Technical Assistance Program 1998 Activity Report prepared by Jenifer Parsons Washington State Department of Ecology Environmental Assessment Program Olympia, Washington 98504-7710 June 1999 Publication No. 99-328 Table of Contents List of Figures .................................................................................................................................ii List of Tables...................................................................................................................................ii Acknowledgments..........................................................................................................................iii
    [Show full text]
  • Federal Register/Vol. 63, No. 250/Wednesday, December 30
    71838 Federal Register / Vol. 63, No. 250 / Wednesday, December 30, 1998 / Proposed Rules * * * * * streams or rivers in Cochise and Santa appointment, during normal business Dated: December 22, 1998. Cruz counties, Arizona. If this proposal hours at the above address. Donald Barry, is made final, section 7 of the Act would FOR FURTHER INFORMATION CONTACT: prohibit destruction or adverse Tom Assistant Secretary for Fish and Wildlife and Gatz, Endangered Species Coordinator, Parks. modification of critical habitat by any at the above address (telephone 602/ [FR Doc. 98±34412 Filed 12±23±98; 3:59 pm] activity funded, authorized, or carried 640±2720 ext. 240; facsimile 602/640± BILLING CODE 4310±55±C out by any Federal agency. Section 4 of the Act requires us to consider 2730). economic and other impacts of SUPPLEMENTARY INFORMATION: DEPARTMENT OF THE INTERIOR specifying any particular area as critical habitat. We solicit data and comments Background Fish and Wildlife Service from the public on all aspects of this Lilaeopsis schaffneriana ssp. recurva proposal, including data on the 50 CFR Part 17 (referred to as Lilaeopsis in this economic and other impacts of the proposed rule), the Huachuca water RIN 1018±AF37 designation. We may revise this umbel, is a plant found in cienegas proposal to incorporate or address new (desert marshes), streams and springs in Endangered and Threatened Wildlife information received during the southern Arizona and northern Sonora, and Plants; Proposed Determination of comment period. Mexico, typically in mid-elevation Critical Habitat for the Huachuca Water DATES: We will accept comments until wetland communities often surrounded Umbel, a Plant March 1, 1999.
    [Show full text]