This Thesis Is Dedicated to the Memory of My Father Who Passed Away Midway Through Its Completion and Has Been Missed Every Day Since
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reviews of the Genera Schaefferia Absolon, 1900, Deuteraphorura
TAR Terrestrial Arthropod Reviews 5 (2012) 35–85 brill.nl/tar Reviews of the genera Schaefferia Absolon, 1900, Deuteraphorura Absolon, 1901, Plutomurus Yosii, 1956 and the Anurida Laboulbène, 1865 species group without eyes, with the description of four new species of cave springtails (Collembola) from Krubera-Voronya cave, Arabika Massif, Abkhazia Rafael Jordana1, Enrique Baquero1*, Sofía Reboleira2 and Alberto Sendra3 1Department of Zoology and Ecology, University of Navarra, 31080 Pamplona, Spain e-mails: [email protected]; [email protected] *Corresponding author. 2Department of Biology, Universidade de Aveiro and CESAM Campus Universitário de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 3Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala) Paseo de la Pechina 15. 46008 Valencia, Spain e-mail: [email protected] Received on November 4, 2011. Accepted on November 21, 2011 Summary Krubera-Voronya cave and other deep systems in Arabika Massif are being explored during many speleological expeditions. A recent Ibero-Russian exploration expedition (summer of 2010) took place in this cave with the aim of providing a study of the biocenosis of the deepest known cave in the world. Four new species of Collembola were found at different depths: Schaefferia profundissima n. sp., Anurida stereoodorata n. sp., Deuteraphorura kruberaensis n. sp., and Plutomurus ortobalaganensis n. sp., the last one at -1980 m deep. The identification and description of the new species have required the careful study of all congeneric species, implying a revision of each genus. As a result of this work tables and keys to all significant characters for each species are presented. -
Why Are There So Many Exotic Springtails in Australia? a Review
90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007). -
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Nature Conservation Practical Year 2014
Polhillia on the brink: Taxonomy, ecophysiology and conservation assessment of a highly threatened Cape legume genus by Brian du Preez Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Botany) in the Faculty of Science at Stellenbosch University Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Supervisors: Prof. L.L. Dreyer, Prof. A.J. Valentine, Prof. M. Muasya April 2019 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: ……15 February 2019……… Copyright ©2019 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za TABLE OF CONTENTS DECLARATION....................................................................................................................... i LIST OF FIGURES ................................................................................................................ vi LIST OF TABLES ................................................................................................................... x ABSTRACT ......................................................................................................................... -
With Special Emphasis on the Equatorial Oceanic Islands
insects Article Synthesis of the Brazilian Poduromorpha (Collembola: Hexapoda) with Special Emphasis on the Equatorial Oceanic Islands Estevam C. A. de Lima 1,2,* , Maria Cleide de Mendonça 1, Gabriel Costa Queiroz 1 , Tatiana Cristina da Silveira 1 and Douglas Zeppelini 2 1 Laboratório de Apterygotologia, Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; [email protected] (M.C.d.M.); [email protected] (G.C.Q.); [email protected] (T.C.d.S.) 2 Laboratório de Sistemática de Collembola e Conservação—Coleção de Referência de Fauna de Solo—CCBSA—Universidade Estadual da Paraíba Campus V, João Pessoa 58070-450, Brazil; [email protected] * Correspondence: [email protected] Simple Summary: Endemic Collembola species are bioindicators of environmental quality since native species abundance is particularly sensitive to environmental disturbances. Oceanic island biota generally present high percentages of endemic species, and the vulnerability of these species is higher than those of the continents. The objective of this work was to carry out a survey of the Collembola species of the order Poduromorpha in the Brazilian oceanic islands and synthesize a distribution list of this order for Brazil. Our results reveal four new species of Collembola Poduromorpha for Brazilian oceanic islands that may be useful for the conservation strategies of these island regions and a contributor to the knowledge of the order in Brazil. Citation: de Lima, E.C.A.; de Mendonça, M.C.; Queiroz, G.C.; da Silveira, T.C.; Abstract: We present new species and records of Poduromorpha for the Brazilian oceanic islands and Zeppelini, D. -
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld. -
Por Que Devemos Nos Importar Com Os Colêmbolos Edáficos?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) REVISTA SCIENTIA AGRARIA Versão On-line ISSN 1983-2443 Versão Impressa ISSN 1519-1125 SA vol. 17 n°. 2 Curitiba abril/maio. 2016 p. 21-40 POR QUE DEVEMOS NOS IMPORTAR COM OS COLÊMBOLOS EDÁFICOS? Why should we care about edaphic springtails? Luís Carlos Iuñes Oliveira Filho¹*, Dilmar Baretta² 1. Professor do curso de Agronomia da Universidade do Oeste de Santa Catarina (Unoesc), Campus Xanxerê - SC, E-mail: [email protected] (*autor para correspondência). 2. Professor do curso de Zootecnia da Universidade do Estado de Santa Catarina (UDESC Oeste), Campus Chapecó - SC. Bolsista em Produtividade Científica CNPq. E-mail: [email protected] Artigo enviado em 26/08/2016, aceito em 03/10/2016 e publicado em 20/12/2016. RESUMO: Este trabalho de revisão tem como objetivo apresentar a importância dos colêmbolos edáficos, com destaque para aspectos agronômicos e ecológicos. São abordadas as características gerais, densidade e distribuição dos colêmbolos, bem como a relação dos colêmbolos com práticas agrícolas, com fungos, com ciclagem de nutrientes e fertilidade do solo. São também reportados trabalhos da literatura, demonstrando a importância desses organismos aos serviços do ecossistema, como ciclagem de nutrientes, melhoria na fertilidade, agregação do solo, controle de fungos e indicadores da qualidade do solo. Pretende-se com este trabalho demonstrar o importante papel desempenhado pelos colêmbolos e expandir o campo de pesquisa com esses organismos, aumentando o conhecimento dos importantes processos mediados por eles e a interface entre a Ecologia do Solo e Ciência do Solo. -
Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta. -
Evidence for Cryptic Diversity in the “Pan-Antarctic” Springtail Friesea Antarctica and the Description of Two New Species
insects Article Evidence for Cryptic Diversity in the “Pan-Antarctic” Springtail Friesea antarctica and the Description of Two New Species Antonio Carapelli 1,* , Penelope Greenslade 2, Francesco Nardi 1 , Chiara Leo 1 , Peter Convey 3 , Francesco Frati 1 and Pietro Paolo Fanciulli 1 1 Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; [email protected] (F.N.); [email protected] (C.L.); [email protected] (F.F.); [email protected] (P.P.F.) 2 Environmental Management, School of Health and Life Sciences, Federation University, Ballarat, VIC 3350, Australia; [email protected] 3 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-0577-234-410 Received: 31 January 2020; Accepted: 20 February 2020; Published: 25 February 2020 Abstract: The invertebrate terrestrial fauna of Antarctica is being investigated with increasing interest to discover how life interacts with the extreme polar environment and how millions of years of evolution have shaped their biodiversity. Classical taxonomic approaches, complemented by molecular tools, are improving our understanding of the systematic relationships of some species, changing the nomenclature of taxa and challenging the taxonomic status of others. The springtail Friesea grisea has previously been described as the only species with a “pan-Antarctic” distribution. However, recent genetic comparisons have pointed to another scenario. The latest morphological study has confined F. grisea to the sub-Antarctic island of South Georgia, from which it was originally described, and resurrected F. antarctica as a congeneric species occurring on the continental mainland. -
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Die Plantfamilie ASTERACEAE: 6
ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae.