Gia Skill Study Ge

Total Page:16

File Type:pdf, Size:1020Kb

Gia Skill Study Ge GE GIA SKILL STUDY Complete Edition GEORGIA DEPARTMEN rc F LABOR BEN T. HUIET EMPLOYMENT SECUR TY AGENCY COMMISSIONER ANALYSIS OF GEORGIA'S TECHNICAL, SKILLED, AND CLERICAL LABOR REQUIREMENTS AND TRAINING NEEDS 1962 to 1967 by Dr. John L. Fulmer Project Director and Professor and Dr. Robert E. Green Assistant Project Director and Assistant Professor Both of the Faculty School of Industrial Management Georgia Institute of Technology March 15, 1963 Georgia Department of Labor Ben T. Huiet Employment Security Agency Commissioner Contract A-636 SPONSORING COMMITTEE Mr. L. L. Austin, Director Retail Merchants Association Retail Automobile Dealers Association Mr. Walter T. Cates Executive Vice President Georgia State Chamber of Commerce Mr. Clifford Clarke Executive Vice President Associated Industries of Georgia Mr. J. W. Fanning, Director Institute for Community & Area Development University of Georgia Mr. T. M. Forbes Executive Vice President Georgia Textile Manufacturers Association Mr. Elmer George Executive Director Georgia Municipal Association Mr. Hill Healan Executive Director Association of County Commissioners of Georgia Mr. J. O. Long Georgia State Supervisor U.S. Bureau of Apprenticeship & Training Mr. Jack J. Minter, Director Georgia Department of Commerce Mr. 0. L. Shelton Executive Vice President & General Manager Atlanta Chamber of Commerce Mr. E. A. Yates, Jr., Vice President Georgia Power Company ACKNOWLEDGEMENTS Many people contributed importantly to this study. In fact, it could not have been possible at all without the interest and support of Commissioner Ben T. Huiet, Georgia Department of Labor, and Mr. Marion Williamson, Director, Employment Security Agency, Georgia Department of Labor. The as- sistance and advice of Mr. 0. H. Stephenson, Chief, Reports and Analysis Section, Employment Security Agency, on the questionnaires, editing, and machine tabulation were invaluable and the authors express here a deep sense of gratitude to Mr. Stephenson, a technician par excellence. We are greatly indebted to Mrs. Maria M. Mallet, Assistant Chief, Reports and Analysis Section, Employment Security Agency, for her excellent help on publicity and question- naire follow-up. Her untiring efforts to get the various manuscripts in published form were invaluable. Our sincere appreciation is extended to Messrs. Jack P. Nix and William M. Hicks, Georgia Department of Education, for interest, enthusiasm, and counsel on the various aspects of the study. We are also grateful for the help of the sponsoring committee, listed on the preceeding page, who publicized the report and otherwise helped get the questionnaires returned. We should like to mention especially the fine work of Messrs. Walter Cates, Paul Miller, Elmer George, and Hill Healan, who wrote numerous letters in support of the questionnaire and the interviews. We acknowledge a great debt of gratitude to personnel of the Rich Electronic Computer Center, Georgia Tech, especially Professor Charlie Reed, who programmed the sample inflation and the print-outs so efficiently and elegantly. We are sincerely grateful to following persons who read critically portions of the manuscript: Mr. L. V. Johnson, Director Georgia Tech Extension Division Mr. Roy A. Martin, Special Research Engineer Engineering Experiment Station Georgia Tech Dr. Wm. B. Harrison, III., Director Nuclear Physics Department Engineering Experiment Station Georgia Tech Professor Leonard H. Taylor Southern Technical Institute Professor Jesse J. Defore Southern Technical Institute Our sincere appreciation is here extended to all those personnel, pay- roll people and others in each company who worked hard to get the rather long questionnaires filled out despite summer vacations. Without their help in getting to us complete and accurate information on the current use and future requirements of skilled, technical and clerical workers in their com- panies, this study would not have been possible. The report in final form, its accuracy, set up, and general appearance was the prime responsibility of our efficient secretary, Miss Alice Glover, who labored through many revisions without complaint. We sincerely appreciate her fine work in typing the manuscript in final form. Finally and most important of all, this study could not have been at all possible without financial assistance and counsel from the Bureau of Employment Security, U. S. Department of Labor. We are especially grateful to Messrs. Levine, Chavrid, and Cappio for advice and many helpful suggestions on various aspects of the study. - iv- CONTENTS Page Sponsoring Committee ii Acknowledgements iii Highlights of the Study 1 A. Conclusions and Recommendations 1 B. Brief Digest of Findings 4 I. Introduction 10 A. Objectives 12 B. Areas in the Study 12 C. Brief Methodology 13 D. Limitations of Study 15 II. Technical Workers in Georgia 17 A. Trends in Georgia's College, Technical, and Skilled Workers 17 B. Force of Technological Change 20 III. Growth Expectations of Sample Firms 22 IV. Characteristics of the Universe Sampled 26 A. Age and Sex of Skilled Workers 27 B. Comparison of Expected and Projected Employment 29 C. Estimated Employer Demand and Components of Demand 30 D. Factors Influencing Relative Number of Skilled Workers 31 V. Training Programs 37 A. Company Training 37 B. Public Training Programs 44 C. Apprenticeship Training 49 D. Union Training Programs 50 E. Relationship of Training to Employer Demand 50 VI. Impact of Changing Technology on Need for New Types of Technicians 53 A. Industrial Trends 55 B. General Summary of Overall State's Industrial Trends 71 C. Research into Science and Technology 73 D. New Technicians Required - 1963 to 1967 74 E. Statistical Analysis of Demand for Technicians to Fill New Positions 1962 to 1963 77 F. Course Specification for New Technicians 81 G. Relationship of Technicians to Scientific Progress and Technological Development 84 VII. Characteristics of the Self-Employed 89 A. Sample Selection and Response 89 B. Method of Analysis of the Data 90 C. Summary of Findings 90 D. Significance of Findings to Main Report 93 - v- CONTENTS (Continued) Page VIII. Demand-Supply Summaries for Major Skilled Types 95 IX. Demand-Supply Summaries by Areas 99 A. Project Area Total 99 B. Area Analysis 102 Atlanta SMSA 107 Non-Metropolitan Georgia 111 5-Smaller SMSA's 114 Albany SMSA 117 Macon SMSA 119 Savannah SMSA 121 Augusta SMSA 123 Columbus SMSA 125 X. Georgia Trends in Demand for Skilled Workers 127 A. Major Skilled Categories 127 B. Current and Future Employment of Major Job Types 131 XI. Factors Retarding Technical Education 133 XII. Conclusions 139 APPENDIX A: NEW TECHNICIANS 1. List of Job Titles 2 2. Job Specifications for New Technicians 3 3. Summary of Course Requirements 15 4. Specific Apprenticeship Training Programs in Georgia 25 APPENDIX B: METHODOLOGY I. Basic Procedure 2 II. Definitions 13 III. List of Jobs 14 IV. Questionnaires 19 V. Publicity 46 VI. Letters 50 VII. Use of Computers in Processing Data 57 VIII.Sample Inflation and Related Statistical Analysis 67 APPENDIX C: STATISTICAL TABLES 1. Project Area 1 2. 3 Major Areas 14 3. 5-Sub-Areas 49 4. State of Georgia 64 INDEX OF TABLES (Main Report) Page Table Number 1. Number and Ratio of Population Completing High School 18 2. Number and Ratio of Total Employment Engineers and Scientists 19 3. Employment Data for Sample Firms 23 4. Age Distribution of Skilled Workers 27 5. Percentage of Skilled Workers Female 28 6. Current and Projected Employment 30 7. Factors Contributing Employer Demand 32 8. Effect of Type and Size of Company 34 9. Company Training Programs 39 10. Minimum Educational Requirements of Companies 42 - List of Job Types for Which Companies Requested Training 43 11. Company Training as a Source of Skilled Workers 52 12. New Technicians-Titles and Codes 76 13. Demand for New Technicians by 80 Companies 78 14. Projection of Demand for New Technicians 80 15. Course Specifications Requested for New Technicians 83 16. Characteristics of Self-Employed 91 17. Balance Sheet of Demand and Supply 96 18. Project Area Demand and Net Training Requirements 101 19. Relative Use of Skilled Workers in Different Areas 105 20. Relative Concentration in Different Areas 106 21. Atlanta SMSA Demand and Training Requirements 109 -vii- INDEX OF TABLES (continued) Page Table Number 22. Non-Metropolitan Georgia Demand and Training Requirements 112 23. Five-Smaller SMSA's Demand and Training Requirements 115 24. Albany SMSA Demand and Training Requirements 118 25. Macon SMSA Demand and Training Requirements 120 26. Savannah SMSA Demand and Training Requirements 122 27. Augusta SMSA Demand and Training Requirements 124 28. Columbus SMSA Demand and Training Requirements 126 29. Use of Skilled Workers in Georgia Industries 128 30. Use of Skilled Workers in Georgia Manufacturing 130 31. Current and 1967 Demand in Georgia 132 HIGHLIGHTS OF THE STUDY A. Conclusions and Recommendations 1. Rapid technological change of a complex nature is a dominant factor in the Georgia economy. Top management is cognizant of the technological changes but is being overwhelmed by the speed and complexity of them. Many have not analyzed fully the implications of technological change in terms of their operations nor in terms of their need for technicians. 2. The rapidity and complexity of technological change are producing stead- ily more complex and expensive equipment in production operations and also consumer appliances. From the
Recommended publications
  • Safety Hazards Material Processing Laboratory Room 232
    Safety Hazards Material Processing Laboratory Room 232 HAZARD: Rotating Equipment / Machine Tools Be aware of pinch points and possible entanglement Personal Protective Equipment: Safety Goggles; Standing Shields, Sturdy Shoes No: Loose clothing; Neck Ties/Scarves; Jewelry (remove); Long Hair (tie back) HAZARD: Projectiles / Ejected Parts Articles in motion may dislodge and become airborne. Personal Protective Equipment: Safety Goggles; Standing Shields HAZARD: Heating - Burn Be aware of hot surfaces Personal Protective Equipment: Safety Goggles; High Temperature Gloves; Welding Apron, Welding Jacket, Boot Gauntlets, Face Shield HAZARD: Chemical - Burn / Fume Use Adequate Ventilation and/or Rated Fume Hood. Make note of Safety Shower and Eyewash Station Locations. Personal Protective Equipment: Safety Goggles; Chemically Rated Gloves; Chemically Rated Apron HAZARD: Electrical - Burn / Shock Care with electrical connections, particularly with grounding and not Using frayed electrical cords, can reduce hazard. Use GFCI receptacles near water. HAZARD: High Pressure Air-Fluid / Gas Cylinders / Vacuum Inspect before using any pressure / vacuum equipment. Gas cylinders must be secured at all times. Personal Protective Equipment: Safety Goggles; Standing Shields HAZARD: Water / Slip Hazard Clean any spills immediately. R. Dubrovsky Mechanical Engineering Department, NJIT ME 215, Engineering Materials & Processes Experiment # 6 EXPERIMENT # 6: METAL CUTTING PROCESSES AND TOOL GEOMETRY Goal: To familiarize the students with main metal cutting processes, cutting machines and cutting tool geometry. Objectives: To learn principles of machining, chip formation approach, cutting parameters, tool geometry and its influence on cutting process, surface finishing and accuracy. Equipment Lathe, milling machine, optical comparator, protractor, carbide lathe tools, & Tools: high speed steel cutters: spiral-point drill and milling cutter.
    [Show full text]
  • Investigation of Dynamic Behavior of Aluminum Alloy Armor Materials
    INVESTIGATION OF DYNAMIC BEHAVIOR OF ALUMINUM ALLOY ARMOR MATERIALS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MEHMET MACAR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING SEPTEMBER 2014 Approval of the thesis: INVESTIGATION OF DYNAMIC BEHAVIOR OF ALUMINUM ALLOY ARMOR MATERIALS submitted by MEHMET MACAR in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Department, Middle East Technical University by, Prof.Dr. Canan Özgen _____________ Dean, Graduate School of Natural and Applied Sciences Prof.Dr. Suha Oral _____________ Head of Department, Mechanical Engineering Prof.Dr. R.Orhan Yıldırım _____________ Supervisor, Mechanical Engineering Dept., METU Assoc.Prof.Dr.Murat Vural _____________ Co-supervisor, Mechanical, Materials & Aerospace Eng. Dept., IIT Examining Committee Members: Prof. Dr. Metin Akkök _____________ Mechanical Engineering Dept., METU Prof. Dr. R.Orhan Yıldırım _____________ Mechanical Engineering Dept., METU Prof. Dr. Bilgehan Ögel _____________ Metallurgical and Materials Engineering Dept., METU Prof. Dr. Ömer Anlağan _____________ Mechanical Engineering Dept., Bilkent University Assoc.Prof.Dr. Lütfullah Turanlı _____________ Civil Engineering Dept., METU Date: 04 September 2014 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: MEHMET MACAR Signature : iv ABSTRACT INVESTIGATION OF DYNAMIC BEHAVIOR OF ALUMINUM ALLOY ARMOR MATERIALS Macar, Mehmet Ph.D., Department of Mechanical Engineering Supervisor :Prof.
    [Show full text]
  • Optical Instruments Profile Projectors
    PARTNERS IN PRECISION OPTICAL INSTRUMENTS PROFILE PROJECTORS R14 X10 LENS CONTENTS Page No. Projectors Baty R14 - Profile Projector 3 Baty R400 - Profile Projector 4 Baty R600 - Profile Projector 5 Baty SM300 - Profile Projector 6 Baty SM350 - Profile Projector 7 Baty SM20 - Profile Projector 8 Page 4 Software Baty Readout Options 9 Accessories Baty Options & Accessories - Profile Projector 10 Reprorubber - Metrology Grade Casting Material 11-12 Notes 13-15 Page 7 Page 12 Page 11 Pages 9-10 2 For more information visit www.bowersgroup.co.uk PROJECTORS Baty R14 - Profile Projector The Baty R14 bench mount profile projector with its 340mm screen combines high accuracy non-contact measurement and inspection with a large 175mm x 100mm measuring range. Choice of digital readouts and optional automatic profile edge detection ensures that you can have the projector that fits your requirements. The horizontal light path configuration is ideally suited to turned machined parts that can be secured to the workstage using a range of optional accessories from the Baty fixture family. The compact and robust lightweight chassis makes the R14 ideal for workshop environments. Features • 340mm (14") screen with 90º crosslines and chart clips • Profile illumination with halogen lamp and green filter • Lens magnification choice: 10x, 20x, 25x, 50x and 100x • Surface illumination (fibre optic) • Helix adjustment of light source ± 7º for accurate thread form projection • Workstage with machined slot for holding accessories • Workstage measuring range of 175mm
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    Microfabrication of a Segmented-Involute-Foil Regenerator, Testing in a Sunpower Stirling Convertor, and Supporting Modeling and Analysis Mounir B. Ibrahim1 Cleveland State University, Cleveland, Ohio, 44115 Roy C. Tew2 NASA Glenn Research Center, Cleveland, Ohio, 44135 David Gedeon 3 Gedeon Associates, Athens, Ohio, 45701 Gary Wood 4 Sunpower, Inc., Athens, Ohio, 45701 and Jeff McLean5 Mezzo Technologies, Baton Rouge, LA 70806 Under Phase II of a NASA Research Award contract, a prototype nickel segmented-involute-foil regenerator was microfabricated via LiGA and tested in the NASA/Sunpower oscillating-flow test rig. The resulting figure- of-merit was about twice that of the ~90% porosity random-fiber material currently used in the small 50-100 W Stirling engines recently manufactured for NASA. That work was reported at the 2007 International Energy Conversion Engineering Conference in St. Louis, was also published as a NASA report, NASA/TM-2007-2149731, and has been more completely described in a recent NASA Contractor Report, NASA/CR-2007-2150062. Under a scaled-back version of the original Phase III plan, a new nickel segmented- involute-foil regenerator was microfabricated and has been tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator been made from a low-conductivity material. Also the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator’s low flow resistance; thus the efficiency would likely have been even higher had the FTB been completely reoptimized.
    [Show full text]
  • Friction Bit Joining of Similar Alloy Sheets of High-Strength Aluminum Alloy 7085" (2018)
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2018-06-01 Friction Bit Joining of Similar Alloy Sheets of High- Strength Aluminum Alloy 7085 Matthew R. Okazaki Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Science and Technology Studies Commons BYU ScholarsArchive Citation Okazaki, Matthew R., "Friction Bit Joining of Similar Alloy Sheets of High-Strength Aluminum Alloy 7085" (2018). All Theses and Dissertations. 6866. https://scholarsarchive.byu.edu/etd/6866 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Friction Bit Joining of Similar Alloy Sheets of High-Strength Aluminum Alloy 7085 Matthew R. Okazaki A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Mike P. Miles, Chair Jason M. Weaver Yuri Hovanski School of Technology Brigham Young University Copyright © 2018 Matthew R. Okazaki All Rights Reserved ABSTRACT Friction Bit Joining of Similar Alloy Sheets of High-Strength Aluminum Alloy 7085 Matthew R. Okazaki School of Technology, BYU Master of Science Friction Bit Joining (FBJ) is a new technology used primarily in joining dissimilar metals. Its primary use has been focused in the automotive industry to provide an alternative joining process to welding. As automotive manufacturing has continually pushed toward using dissimilar materials, new joining processes have been needed to replace traditional welding practices that do not perform well when materials are not weld compatible.
    [Show full text]
  • Job Shop Machining Services
    ™ Job Shop Machining Services Designers and Manufacturers of Machines • Tools • Fixtures • Test Equipment • Machine to Print • Short and Medium Run Production • Prototyping • Gages and Fixtures • Contract Manufacturing • Managed Inventory Lomar machining services utilize the latest in CNC lathes, machining centers, and grinding equipment. We machine parts out of a variety of materials such as plastics, aluminum, mild steel, tool steel, brass, bronze, and stainless steel. Depending upon your application, several material finishing processes are available including special heat treating (including ion nitride), electroplating, passivating, and anodizing. For more information or a quote, please contact us at 517-563-8136 Tool & Die makers possess the knowledge and experience to produce the high quality, or e-mail at [email protected]. precision products our customers rely on. Equipment List (1) CNC 5-Axis Vertical Machining Center: 30” x 20” x 20” (15) CNC Vertical Machining Centers with up to 120” X, 40”Y, 30”Z Travel, with up to 30 Position Automatic Tool Changers, and Programmable Rotary 4th Axis Attachments and Probe Systems. (12) Vertical mills retrofitted with 2-Axis CNC Controls. (1) Horizontal Machining Center, 64x50x32 with 30 inch dia 4th axis platter. (2) Horizontal Mills Retrofitted with 2-Axis CNC Controls. (16) CNC Lathes with Capacities to 24” Dia. X 40” Lg., up to 29 H.P. (2) CNC Lathes with Capacity to 2” Dia. X 40” Long with Bar Feeder (1 - Dual Spindle with bar feed) (10) Engine Lathes to 19” O.D. x 72” Long., All with D.R.O. (4) High Speed Second Operation Lathes. (3) Wire E.D.M.
    [Show full text]
  • Fundamental Good Practice in Dimensional Metrology
    Good Practice Guide No. 80 Fundamental Good Practice in Dimensional Metrology David Flack and John Hannaford Measurement Good Practice Guide No. 80 Fundamental Good Practice in Dimensional Metrology David Flack Engineering Measurement Services Team Engineering Measurement Division John Hannaford ABSTRACT This good practice guide is written for those who need to make dimensional measurements but are not necessarily trained metrologists. On reading this guide you should have gained a basic knowledge of fundamental good practice when making dimensional measurements. An introduction to length units and key issues such as traceability and uncertainty is followed by some examples of typical sources of error in length measurement. Checking to specification, accreditation and measurement techniques are also covered along with an introduction to optical measurement techniques. © Queen's Printer and Controller of HMSO First printed July 2005 Reprinted with minor corrections/amendments October 2012 ISSN 1368-6550 National Physical Laboratory Hampton Road, Teddington, Middlesex, TW11 0LW Acknowledgements This document has been produced for the Department for Business, Innovation and Skills; National Measurement System under contract number GBBK/C/08/17. Thanks also to Hexagon Metrology, Romer, Renishaw and Faro UK for providing some of the images and to Dr Richard Leach (NPL), Simon Oldfield (NPL), Dr Anthony Gee (University College London) and Prof Derek Chetwynd (University of Warwick) for suggesting improvements to this guide. i Contents Introduction
    [Show full text]
  • 2019 GAGE CALIBRATION PRICE LIST Effective Through December 31, 2019
    INDUSTRIAL GAGE CALIBRATION SERVICES 2019 GAGE CALIBRATION PRICE LIST Effective through December 31, 2019 ITEM DESCRIPTION PRICE ITEM DESCRIPTION PRICE AG DAVIS GROOVE PLUG $12.75 GAGE THIN BLOCKS (EA) $5.70 ANGLE BLOCKS $20.65 GROOVE GAGE $23.45 ANGLE GAGES PER LEAF $3.80 HARDNESS TESTER BRINELL $104.80 ANGLE PLATES UP TO 12" $39.70 HARDNESS TESTER HAND HELD $46.30 ANGLE PLATES 12-24" $59.50 HARDNESS TESTER ROCKWELL $104.80 BENCH CENTERS TO 12" $78.25 HEIGHT GAGE 0-12" $51.80 BENCH CENTERS 12-36" $113.40 HEIGHT GAGE 13-24" $64.00 BLAKE COAX $35.80 HEIGHT GAGE 24-40" $121.30 BLOCK - 1,2,3 $21.80 HEIGHT GAGE MASTER TO 24" $115.90 BORE GAGE DIAL $31.70 HEIGHT MASTER 18" $126.90 BORE GAGE DIGITAL $31.70 HOLE GAGES $20.10 CALIPER / Versa Gages 0-6" $16.30 HOLIDAY TESTER $44.10 CALIPER / Versa Gages 0-8" $16.30 HYGROMETER $28.10 CALIPER / Versa Gages 12" $18.15 ID/OD GAGE $23.40 CALIPER / Versa Gages 18" $25.20 INDICATOR STAND $20.35 CALIPER / Versa Gages 24" $33.60 JOHNSON THREAD COMPARATOR $81.10 CALIPER / Versa Gages 36" $39.90 KALMASTER $79.40 CALIPER / Versa Gages 40" $40.65 LEVELS - DIGITAL $53.50 CALIPER / Versa Gages 48" $48.20 LEVELS - PRECISION $60.70 CALIPER / Versa Gages 60" $63.75 LOAD CELL (500 LB. MAX.) $86.00 CALIPER / Versa Gages 72" $88.70 MAGNETIC BLOCK $32.00 CALIPER MASTER $54.00 MASTER BLOCKS EACH $7.25 CHAMFER GAGES $28.60 MASTER SET DISC .150-2.25" $15.70 COMPTOR DIAL $11.55 MASTER SET DISC 2.251-5.25" $18.00 COMPTOR PLUG $12.35 MASTER SET DISC 5.25 - 12" $23.40 DEAD WEIGHT PISTON $32.40 MASTER SETTING DISC OV 12" $35.25
    [Show full text]
  • Littlemachineshop.Com Catalog 34 Mid-2021
    C A T A L O G Mid-2021 34 The premier source of tooling, parts, and accessories for bench top machinists. www.LittleMachineShop.com (800) 981 9663 396 W Washington Blvd #500 Pasadena CA 91103 Email: [email protected] Pricing Note Prices in this catalog are correct at the time of printing. The 25% additional tariff imposed on many of our imported products remains in place. And, of course, COVID continues to affect supply chains, factory production—and prices. Please check our website or call us to get the latest prices. Welcome to LittleMachineShop.com… …the premier source of machines, tooling, parts, and accessories for bench top machinists. We focus on best-in-class machines and we offer tools, accessories, and replacement parts for: • Bench top lathes • Bench top milling machines • Small band saws • Bench top grinders Products we support are sold by LittleMachineShop.com, Grizzly Industrial, Harbor Freight Tools, Micro-Mark, Busy Bee Tools, and others. Besides the products shown in this catalog, we have virtually every replacement part for the mini lathes, mini mills, and micro mills sold by these companies. Visit our website at www.littlemachineshop.com to see large, full-color pictures along with more products and more information than we can fit in this catalog. Check our website at www.littlemachineshop.com for current prices. Prices are subject to change without notice. Contents HiTorque Mini Mill (SX2) Accessories 51 CNC Machines Micro Mill (X1) Accessories 52 Accessories 9 Micro Mill (X1) Assemblies 52 CNC Lathes 9 Mini
    [Show full text]
  • S-T Industries Catalog.Pdf
    354232_ST_Cover_z 4/12/07 10:19 AM Page 1 Form 40-0195-00 354232_ST_Cover_z 4/12/07 10:19 AM Page 2 FOUR REASONS FOR MAKING S-T YOUR SUPPLIER OF PRECISION MEASURING INSTRUMENTS KNOW-HOW Scherr-Tumico measuring tools have been a vital part of American industry for QWWWWWWWWWWWWWWWWWWWE 1 more than 65 years. During this period, we have developed the knowledge and RWWWWWWWWWWWWWWWWWWWT skills which provide our customers the ability to resolve most measuring problems. If you have a problem which cannot be handled by our standard tools, call us and RWWWWWWWWWWWWWWWWWWWT the chances are we will be able to provide you with the tools needed to get your WARRANTY job done. During the past 65 years, we have produced many millions of dollars in RWWWWWWWWWWWWWWWWWWWWithin one year from the date of purchase, any repairs necessary T special tools for American industries, both large and small. Put this experience to RWWWWWWWWWWWWWWWWWWWdue to defects in material or workmanship will be made without T work for you. charge by S-T INDUSTRIES, INC. This warranty does not apply to RWWWWWWWWWWWWWWWWWWWtools that have been modified, mishandled or misused, etched, T stamped or otherwise marked or damaged. This warranty applies to RWWWWWWWWWWWWWWWWWWWthe original purchaser and is not transferable. No other warranty, T QUALITY RWWWWWWWWWWWWWWWWWWWeither expressed or implied, shall be applicable. S-T INDUSTRIES, T All S-T products are subject to a rigorous 100% inspection process before they are INC.’s liability does not extend beyond the repair or replacement. 2 shipped to you. This process has been the major factor in making Scherr-Tumico RWWWWWWWWWWWWWWWWWWWT products welcome throughout the metalworking industry.
    [Show full text]
  • Competency Template
    PROGRAM OUTLINE Tool and Die Maker The latest version of this document is available in PDF format on the ITA website www.itabc.ca To order printed copies of Program Outlines or learning resources (where available) for BC trades contact: Crown Publications, Queen’s Printer Web: www.crownpub.bc.ca Email: [email protected] Toll Free 1 800 663-6105 Copyright © 2011 Industry Training Authority This publication may not be modified in any way without permission of the Industry Training Authority TOOL AND DIE MAKER PROGRAM OUTLINE APPROVED OCTOBER 2010 BASED ON NOA 2005 Developed by Industry Training Authority Province of British Columbia Tool and Die Maker Industry Training Authority 1 10/16 TABLE OF CONTENTS Section 1 INTRODUCTION ................................................................................................................ 1 Foreword ........................................................................................................................... 2 How to Use this Document ................................................................................................ 3 Section 2 PROGRAM OVERVIEW .................................................................................................... 5 Occupational Analysis Chart ............................................................................................. 7 Training Topics and Suggested Time Allocation ............................................................... 9 Section 3 PROGRAM CONTENT ...................................................................................................
    [Show full text]
  • Profile Projectors R14 Profile Projector
    PROFILE PROJECTORS R14 PROFILE PROJECTOR The Baty R14 bench mount profile projector with its 340mm screen combines high accuracy non-contact measurement and inspection with a large 175mm x 100mm measuring range. Choice of digital readouts and optional automatic profile edge detection. The horizontal light path configuration is ideally suited to machined parts that can be secured to the workstage using a range of optional accessories from the Baty fixture family. The compact and robust lightweight chassis makes the R14 ideal for workshop environments. Standard features 340mm (14") screen with 90° crosslines and chart clips Profile illumination with halogen lamp and green filter Lens magnification choice: x10, x20, x25, x50 and x100 Surface illumination (fibre optic) Helix adjustment of light source ± 7° for accurate thread form projection Workstage with machined slot for holding accessories Workstage measuring range of 175mm (7") x 100mm (4") Digital angle measurement to 1 minute Optional features Internally fitted automatic edge sensor (illustrated) Swing over lamphouse to allow clear access to the workstage Various electronic measuring systems to suit individual requirements Cabinet stand ensures a solid base and provides storage Other options include foot switch GXL/GXLE control and printer Horizontal stage systems Lens working distance Object focal plane Field of view Full field Max object height R14 Lens Working Capacity mm / (inches) Lens Magnification x10 x20 x25 x50 x100 Half field Field of view 34 (1.4) 17 (0.7) 13.5
    [Show full text]