Human Physiology an Integrated Approach

Total Page:16

File Type:pdf, Size:1020Kb

Human Physiology an Integrated Approach Compartmentation: Cells and Tissues Functional Compartments of the Body 3 The Lumens of Some Organs Are Outside the Body Functionally, the Body Has Three Fluid Compartments Biological Membranes The Cell Membrane Separates Cell from Environment Membranes Are Mostly Lipid and Protein Membrane Lipids Create a Hydrophobic Barrier Membrane Proteins May Be Loosely or Tightly Bound to the Membrane Membrane Carbohydrates Attach to Both Lipids and Proteins Intracellular Compartments Cells Are Divided into Compartments The Cytoplasm Includes Cytosol, Inclusions, Fibers, and Organelles Inclusions Are in Direct Contact with the Cytosol Cytoplasmic Protein Fibers Come in Three Sizes Microtubules Form Centrioles, Cilia, and Flagella The Cytoskeleton Is a Changeable Scaff old Motor Proteins Create Movement Organelles Create Compartments for Specialized Functions The Nucleus Is the Cell’s Control Center Tissues of the Body Extracellular Matrix Has Many Functions Cell Junctions Hold Cells Together to Form Tissues Epithelia Provide Protection and Regulate Exchange Connective Tissues Provide Support and Barriers Muscle and Neural Tissues Are Excitable Cells are organisms, Tissue Remodeling and entire animals Apoptosis Is a Tidy Form of Cell Death and plants are Stem Cells Can Create New Specialized Cells aggregates of these Organs organisms. Focus on … The Skin —Theodor Schwann, 1839 Background Basics Compartmentation Extracellular fl uid Hydrophobic molecules Proteins p H Covalent and noncova- lent interactions Pancreas cell 66 Compartmentation: Cells and Tissues hat makes a compartment? We may think of some- example is the intracellular compartment called the lysosome , thing totally enclosed, like a room or a box with a with an internal pH of 5 . Th is pH is so acidic that if the lyso- W lid. But not all compartments are totally enclosed . some ruptures, it severely damages or kills the cell that contains think of the modular cubicles that make up many modern it. workplaces. And not all functional compartments have walls . Th e disadvantage to compartments is that barriers between think of a giant hotel lobby divided into conversational group- them can make it diffi cult to move needed materials from one ings by careful placement of rugs and furniture. Biological com- compartment to another. Living organisms overcome this prob- partments come with the same type of anatomic variability, lem with specialized mechanisms that transport selected sub- ranging from totally enclosed structures such as cells to func- stances across membranes. tional compartments without visible walls. In this chapter we explore the theme of compartmentation The first living compartment was probably a simple cell by fi rst looking at the various compartments that subdivide the whose intracellular fl uid was separated from the external envi- human body, from body cavities to the subcellular compart- 3 ronment by a wall made of phospholipids and proteins—the cell ments called organelles. We then examine how groups of cells membrane. Cells are the basic functional unit of living organ- with similar functions unite to form the tissues and organs of the isms, and an individual cell can carry out all the processes of life. body. Continuing the theme of molecular interactions, we also As cells evolved, they acquired intracellular compartments look at how diff erent molecules and fi bers in cells and tissues separated from the intracellular fl uid by membranes. Over time, give rise to their mechanical properties : their shape, strength, groups of single-celled organisms began to cooperate and spe- fl exibility, and the connections that hold tissues together. cialize their functions, eventually giving rise to multicellular organisms. As multicellular organisms evolved to become larger and more complex, their bodies became divided into various Functional Compartments functional compartments. of the Body Compartments are both an advantage and a disadvantage for organisms. On the advantage side, compartments separate The human body is a complex compartment separated from biochemical processes that might otherwise confl ict with one the outside world by layers of cells. Anatomically, the body is another. For example, protein synthesis takes place in one sub- divided into three major body cavities: the cranial cavity (com- cellular compartment while protein degradation is taking place monly referred to as the skull ), the thoracic cavity (also called the in another. Barriers between compartments, whether inside a thorax ), and the abdominopelvic cavity ( Fig. 3.1 a). Th e cavities cell or inside a body, allow the contents of one compartment to are separated from one another by bones and tissues, and they diff er from the contents of adjacent compartments. An extreme are lined with tissue membranes . The cranial cavity { cranium, skull} contains the brain, our primary control center. The thoracic cavity is bounded RUNNING PROBLEM by the spine and ribs on top and sides, with the muscular diaphragm forming the floor. The thorax contains the heart, Pap Tests Save Lives which is enclosed in a membranous pericardial sac { peri -, around + cardium , heart}, and the two lungs, enclosed in sepa- Dr. George Papanicolaou has saved the lives of millions of rate pleural sacs . women by popularizing the Pap test, a screening method that detects the early signs of cervical cancer. In the past 50 Th e abdomen and pelvis form one continuous cavity, the years, deaths from cervical cancer have dropped dramatically abdominopelvic cavity . A tissue lining called the peritoneum in countries that routinely use the Pap test. In contrast, lines the abdomen and surrounds the organs within it (stomach, cervical cancer is a leading cause of death in regions where intestines, liver, pancreas, gallbladder, and spleen). Th e kidneys Pap test screening is not routine, such as Africa and Central lie outside the abdominal cavity, between the peritoneum and America. If detected early, cervical cancer is one of the the muscles and bones of the back, just above waist level. Th e most treatable forms of cancer. Today, Jan Melton, who pelvis contains reproductive organs, the urinary bladder, and had an abnormal Pap test several months ago, returns to the terminal portion of the large intestine. Dr. Baird, her family physician, for a repeat test. The results may determine whether she should undergo treatment for cervical cancer. The Lumens of Some Organs Are Outside the Body Th e hollow organs, such as heart, lungs, blood vessels, and in- testines, create another set of compartments within the body. Th e interior of any hollow organ is called its lumen { lumin, win- dow}. A lumen may be wholly or partially fi lled with air or fl uid. 67 Fig. 3.1 ESSENTIALS Levels of Organization: Body Compartments BODY COMPARTMENTS (a) ANATOMICAL: The Body Cavities (b) FUNCTIONAL: Body Fluid Compartments POSTERIOR ANTERIOR Extracellular fluid (ECF) Cells (intracellular Cranial cavity lies outside the cells. fluid, ICF) Blood Interstitial plasma fluid Fat cell: is the surrounds 50–150 μm extracellular most cells. fluid inside blood vessels. Pleural Ovum: μ sac 100 m Thoracic Pericardial cavity sac Red blood cell: 7.5 μm Diaphragm Abdominal White blood cavity cell: 15 μm Abdominopelvic cavity Smooth muscle Pelvic cell: 15–200 μm long cavity Cells subdivide into intracellular compartments (see Fig. 3.4). (c) Compartments Are Separated by Membranes Pericardial Tissue membranes Phospholipid bilayers membrane have many cells. create cell membranes. Cell Heart Loose connective tissue The pericardial sac is Seen magnified, the pericardial Each cell of the The cell membrane a tissue that surrounds membrane is a layer of flattened pericardial membrane is a phospholipid the heart. cells supported by connective has a cell membrane bilayer. tissue. surrounding it. 68 Compartmentation: Cells and Tissues For example, the lumens of blood vessels are fi lled with the fl uid Biological Membranes we call blood. For some organs, the lumen is essentially an extension Th e word membrane { membrana, a skin} has two meanings in bi- of the external environment, and material in the lumen is not ology. Before the invention of microscopes in the sixteenth cen- truly part of the body’s internal environment until it crosses tury, a membrane always described a tissue that lined a cavity or the wall of the organ. For example, we think of our digestive separated two compartments. Even today, we speak of mucous tract as being “inside” our body, but in reality its lumen is part membranes in the mouth and vagina, the peritoneal membrane of the body’s external environment . An analogy would be the that lines the inside of the abdomen, the pleural membrane that hole through a bead. Th e hole passes through the bead but is not covers the surface of the lungs, and the pericardial membrane actually inside the bead. that surrounds the heart. Th ese visible membranes are tissues: An interesting illustration of this distinction between the thin, translucent layers of cells. internal environment and the external environment in a lumen Once scientists observed cells with a microscope, the na- 3 involves the bacterium Escherichia coli. Th is organism normally ture of the barrier between a cell’s intracellular fl uid and its ex- lives and reproduces inside the large intestine, an internalized ternal environment became a matter of great interest. By the compartment whose lumen is continuous with the external en- 1890s, scientists had concluded that the outer surface of cells, vironment. When E. coli is residing in this location, it does not the cell membrane, was a thin layer of lipids that separated harm the host. However, if the intestinal wall is punctured by the aqueous fl uids of the interior and outside environment. We disease or accident and E. coli enters the body’s internal envi- now know that cell membranes consist of microscopic double ronment, a serious infection can result. layers ( bilayers ) of phospholipids with protein molecules in- serted in them. Th us, the word membrane may apply either to a tissue or to Functionally, the Body Has a phospholipid-protein boundary layer ( Fig.
Recommended publications
  • The Internal Environment of Animals: 32 Organization and Regulation
    CHAPTER The Internal Environment of Animals: 32 Organization and Regulation KEY CONCEPTS 32.1 Animal form and function are correlated at all levels of organization 32.2 The endocrine and nervous systems act individually and together in regulating animal physiology 32.3 Feedback control maintains the internal environment in many animals 32.4 A shared system mediates osmoregulation and excretion in many animals 32.5 The mammalian kidney’s ability to conserve water is a key terrestrial adaptation ▲ Figure 32.1 How do long legs help this scavenger survive in the scorching desert heat? Diverse Forms, Common Challenges Because form and function are correlated, examining anat- omy often provides clues to physiology—biological function. he desert ant (Cataglyphis) in Figure 32.1 scavenges In the case of the desert ant, researchers noted that its stilt-like insects that have succumbed to the daytime heat of the legs are disproportionately long, elevating the rest of the ant Sahara Desert. To gather corpses for feeding, the ant 4 mm above the sand. At this height, the ant’s body is exposed Tmust forage when surface temperatures on the sunbaked sand to a temperature 6°C lower than that at ground level. The ant’s exceed 60°C (140°F), well above the thermal limit for virtually long legs also facilitate rapid locomotion: Researchers have all animals. How does the desert ant survive these conditions? found that desert ants can run as fast as 1 m/sec, close to the To address this question, we need to consider the relationship top speed recorded for a running arthropod.
    [Show full text]
  • CHAPTER 1 Functional Organization of the Human Body and Control of the “Internal Environment”
    CHAPTER 1 Functional Organization of the Human Body and Control of the “Internal Environment” Physiology is the science that seeks to understand the function of living organisms and their parts. In human physiology, we are concerned with the characteristics of the human body that allow us to sense our environment, move about, think and communicate, reproduce, and perform all of the functions that enable us to survive and thrive as living beings. Human physiology links the basic sciences with clin- ical medicine and integrates multiple functions of mol- ecules and subcellular components, the cells, tissues, and organs into the functions of the living human being. This integration requires communication and coordina- tion by a vast array of control systems that operate at every level, from the genes that program synthesis of molecules to the complex nervous and hormonal sys- tems that coordinate functions of cells, tissues, and organs throughout the body. Life in the human being relies on this total function, which is considerably more complex than the sum of the functions of the individual cells, tissues, and organs. Cells Are the Living Units of the Body. Each organ is an aggregate of many cells held together by intercellu- lar supporting structures. The entire body contains 35 to 40 trillion cells, each of which is adapted to perform special functions. These individual cell functions are coordinated by multiple regulatory systems operating in cells, tissues, organs, and organ systems. Although the many cells of the body differ from each other in their special functions, all of them have certain basic characteristics.
    [Show full text]
  • Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis
    Biochimica et Biophysica Acta 1832 (2013) 911–921 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Review Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis☆ Norihiko Sakai, a,b, Andrew M. Tager a,b,c,⁎ a Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA b Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA c Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA article info abstract Article history: Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of Received 12 December 2012 fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. Received in revised form 3 March 2013 IPF is now thought to result from wound-healing processes that, although initiated to protect the host Accepted 4 March 2013 from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant Available online 14 March 2013 or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evi- dence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and re- Keywords: fi Pulmonary fibrosis sultant alveolar epithelial cell death provoke the migration, proliferation, activation and myo broblast Epithelial cells differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they Apoptosis synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby Fibroblasts creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions.
    [Show full text]
  • Lectins in the Cell Nucleus
    Glycoblotogy vol. 1 no. 3 pp. 243-252, 1991 MINI REVIEW Lectins in the cell nucleus John L.Wang, James G.Laing and Richard L.Anderson Nuclear binding of neoglycoproteins implicates lectins Department of Biochemistry, Michigan State University, East Lansing, The existence of lectin molecules in the cell nucleus was first MI 48824, USA inferred from the binding of neoglycoproteins (see Hubert et al., 1989). These neoglycoproteins were derived by coupling specific saccharide structures onto a polypeptide backbone that normally bears no carbohydrate moiety [e.g. bovine serum albumin, Downloaded from https://academic.oup.com/glycob/article/1/3/243/610598 by guest on 27 September 2021 Key words: carbohydrate recognition/neoglycoproteins/ (BSA)]. Fluorescence microscopy and quantitative flow micro- nuclear glycoconjugates/S-type lectins/subcellular localization fluorometry were carried out with fluorescein-labelled neoglyco- proteins and, in certain instances, ultrastructural analyses were performed with mannose (Man)-conjugated ferritin. When Triton-permeabilized baby hamster kidney (BHK) cells Introduction were incubated with fluorescein-labelled neoglycoprotein, fluorescence was observed in both the cytoplasm and the There is a general consensus that the potential to encode nucleus (Seve et al., 1985, 1986). Strongest binding was observed information in carbohydrate structures is enormous. Many of the for neoglycoproteins bearing a-L-rhamnose, whose structure possibilities of carbohydrate recognition in cellular function have resembles that of /S-D-galactose (Gal) (Monsigny et al., 1983). been explored for extracellular molecules and events such as Significant binding (> 3-fold over fluorescein-conjugated BSA) specific cell-cell recognition and cell adhesion to the extracellular was also observed for BSA bearing glucose (Glc), A'-acetyl- matrix.
    [Show full text]
  • Rapamycin Maintains NAD+/NADH Redox Homeostasis in Muscle Cells
    www.aging-us.com AGING 2020, Vol. 12, No. 18 Priority Research Paper Rapamycin maintains NAD+/NADH redox homeostasis in muscle cells Zhigang Zhang1,2, He N. Xu3,6, Siyu Li1, Antonio Davila Jr2, Karthikeyani Chellappa2, James G. Davis2, Yuxia Guan4, David W. Frederick2, Weiqing Chu2, Huaqing Zhao5, Lin Z. Li3,6, Joseph A. Baur2,6 1College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China 2Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4Division of Trauma, Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA 5Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19140, USA 6Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA Correspondence to: Zhigang Zhang, Joseph A. Baur, Lin Z. Li; email: [email protected], [email protected], [email protected] Keywords: rapamycin, optical redox imaging, aging, NAD+/NADH ratio, redox state Received: May 18, 2020 Accepted: August 3, 2020 Published: September 22, 2020 Copyright: © 2020 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Rapamycin delays multiple age-related conditions and extends lifespan in organisms ranging from yeast to mice. However, the mechanisms by which rapamycin influences longevity are incompletely understood.
    [Show full text]
  • Three Dimensional Collagen Scaffolds Promote Ipsc Induction with Higher Pluripotency
    Protein Cell DOI 10.1007/s13238-016-0321-2 Protein & Cell LETTER Three dimensional collagen scaffolds promote iPSC induction with higher pluripotency Dear Editor, metabolism of G1 phase cells and speed up the cell multipli- cation (Tirone, 2001). Moreover, p21 and Btg2 have been also Extracellular environment plays a role in regulating stem cell known as two reprogramming inhibitors, the down-regulation of fates and three dimensional (3D) scaffolds can be utilized to them might boost reprogramming (Bao et al., 2015). mimic the internal environment in vitro. Currently, many types To study the effect of 3D collagen scaffolds on reprogram- of cells have been cultured in 3D conditions but only few ming, therefore, we used two approaches to reprogram MEFs studies have focused on reprogramming in a 3D environment. into iPSCs (Fig. 1D). Firstly, MEFs were grown in 3D collagen 3D culture systems provide circumstances that can bet- scaffolds. Four days later, one part of MEFs was directly Cell ter simulate native conditions which are comprised of dis- reprogrammed in 3D collagen scaffolds (3D), another part of & tinctive cell morphology, oxygen levels, extracellular matrix MEFs was digested and seeded on 2D cell plates then repro- secretion and concentration gradients of signaling factors grammed (3D/2D). Consequently, the group of 3D and 3D/2D (Keung et al., 2010; Gu et al., 2016). showed a higher efficiency and higher colony numbers com- Herein, we used collagen, the major composition of the pared to those in 2D conditions (Fig. 1Eand1F). When the extracellular matrix (Di Lullo et al., 2002), that serves as iPSCs were re-seeded in the 3D scaffolds, the colony formed a Protein scaffolds to offer porous 3D surrounding to mimic in vivo grape-like cluster within the pores of 3D collagen scaffolds environments (Song et al., 2015) and to explore the role of 3D (Fig.
    [Show full text]
  • Keystone Vocab List Used
    Characteristics of Life & The Scientific Method Vocabulary 1) Biology = study of life 2) Cell = basic unit of structure and function of all living things 3) Science = A body of evidence-based knowledge gained through observation and experimentation related to the natural world and technology. 4) Homeostasis = the regulation of an organism’s internal environment to maintain conditions that allow it to live 5) Hypothesis = testable explanation; written in “ IF… THEN ” format 6) Theory = is an explanation based on many observations (hypothesis is repeatedly verified over time and through may separate experiments) 7) Principle (scientific) = A concept based on scientific laws and axioms (rules assumed to be present, true, and valid) where general agreement is present. 8) Law = describes relationships under certain conditions in nature; Describes but does not explain a natural event 9) Agriculture = The artificial cultivation of food, fiber, and other goods by the systematic growing and harvesting of various organisms. 10) Embryology = The branch of zoology studying the early development of living things. 11) System = A set of interacting or interdependent components, real or abstract, that form an integrated whole. An open system is able to interact with its environment. A closed system is isolated from its environment. 12) Mechanism (scientific) = The combination of components and processes that serve a common function. Classification Vocabulary: 1) Eukaryotic cells = have membrane-bound nucleus and organelles; usually more complex than prokaryotic cell 2) Prokaryotic cells = does NOT have a nucleus or other membrane-bound organelles 1 Chemistry of Life Vocabulary: 1) Atom = Smallest particle of an element that has the characteristics of that element 2) Nucleus = Center of atom; contains protons & neutrons 3) Molecule = a group of covalently bonded atoms with no charge 4) pH = how acidic or basic a substance is 5) Freezing Point = The temperature at which a liquid changes state to a solid.
    [Show full text]
  • WNF White Paper: Naturopathic Philosophies, Principles and Theories
    WNF White Paper: Naturopathic Philosophies, Principles and Theories Acknowledgements The World Naturopathic Federation (WNF) greatly appreciates the participation of naturopathic educational institutions in providing the details required for the WNF White Paper: Naturopathic Philosophies, Principles and Theories: Canadian College of Naturopathic Medicine (CCNM), Canada; Collège Européen de Naturopathie Traditionnelle Holistique (CENATHO), France; Centro Andaluz de Naturopatía (CEAN), Spain; Naturopatska Sola (SAEKA), Slovenia; Wellpark College of Natural Therapies, New Zealand. This initiative was led by the Naturopathic Roots Committee with the following members including Heilpraktiker / naturopaths / naturopathic doctors (ND): Tina Hausser, Heilpraktiker, Naturopath - Chair (Spain) Dr. Iva Lloyd, ND (Canada) Dr. JoAnn Yánez, ND, MPH, CAE (United States) Phillip Cottingham, ND (New Zealand) Roger Newman Turner, ND (United Kingdom) Alfredo Abascal, Naturopath (Uruguay) © World Naturopathic Federation July 2017 (date provisional) All rights reserved. Publications of the World Naturopathic Federation can be obtained from our website at www.worldnaturopathicfederation.org. Requests for permission to reproduce or translate WNF publications – whether for sale or for noncommercial distribution – should be addressed to [email protected] All reasonable precautions have been taken by the World Naturopathic Federation to verify the information in this report. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Naturopathic Federation be liable for damages arising from its use. Printed in Canada. Copyright 2017 1 www.worldnaturopathicfederation.org WNF White Paper: Naturopathic Philosophies, Principles and Theories Introduction Table of Contents Process Overview of the Profession I.
    [Show full text]
  • Karpova Structural and Functio
    The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Elizaveta A Karpova, Reynald Gillet To cite this version: Elizaveta A Karpova, Reynald Gillet. The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality?. Trends in Biochemical Sciences, Elsevier, 2018, 43 (12), pp.938-950. 10.1016/j.tibs.2018.09.017. hal-01903169 HAL Id: hal-01903169 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01903169 Submitted on 13 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Structural and Functional Organization of Ribosomal Compartment in the Cell: a Mystery or a Reality? Elizaveta A. Karpova1,2*and Reynald Gillet3* 1Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA 2Department of Physics, Division of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, Russia, 198904 3Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France. *Correspondence: [email protected] and [email protected] Key words: ribosome, polysome, cellular compartment, RNA polymerase, crystals, electron microscopy.
    [Show full text]
  • Living Environment Vocabulary by Prentice Hall 2001 Review Book Unit
    Living Environment Vocabulary By Prentice Hall 2001 Review Book Unit Similarities and Topic 1 Differences Among Living Organisms cell the basic unit of structure and function that makes up all organisms metabolism all the chemical reactions that occur within the cells of an organism homeostasis the ability of an organism to maintain a stable internal environment even when the external environment changes reproduction the process by which organisms produce new organisms of the same type cell respiration the process in which nutrients are broken apart, releasing the chemical energy stored in them synthesis a life process that involves combining simple substances into more complex substances organic term used to describe molecules that contain both hydrogen and carbon inorganic a type of molecule that does not contain both carbon and hydrogen but can contain any other combination of elements organelle a structure within the cell that carries out a specific function tissues a group of specialized cells that perform a specific function organ a body structure made of different kinds of tissues combined to perform a specific function organ system several organs that work together to perform a major function in the body cytoplasm the jellylike substance that is between the cell membrane and the nucleus and that contains specialized structures nucleus a large structure within a cell that controls the cell’s metabolism and stores genetic information, including chromosomes and DNA vacuoles storage sacs within the cytoplasm of a cell that may contain
    [Show full text]
  • Introduction to Anatomy and Physiology
    9/6/2013 Introduction to Anatomy and Physiology A Basic Understanding of the Form and Functions of the Human Body …But First, a little language • The language of anatomy ( a little Greek, a little Latin, a whole lot of Medical Terminology) – If you understand the root an prefix/suffix organization of the vocabulary of the human body, a lot less memorization and a lot more understanding will occur – Ex. Cyte means cell, anything that begins with hepat- refers to the liver, therefore without having to memorize I know a hepatocyte is a Liver cell – See handout 1, App 11 Stedman’s Medical Dictionary Basic Concepts • Anatomy = Form – Anatomy, Greek “cutting away”, refers to the study of structure of body parts and their relationships • What does it look like? What pieces does it have • Physiology = Function – Physiology, the study of life or function • What does it do? • Function follows form follows function… – “complementarity of structure and function” • Ex. Directionality of blood flow due to one way valves 1 9/6/2013 A Few More “Studies” • Pathological Anatomy: the study of structural changes caused by disease • Developmental Anatomy: study of structural changes that occur througout life • Emryology: study of developmental changes before birth Now Back to Anatomy… Organization 2 9/6/2013 This organization applies to all animals and roughly to all life… Levels of Structural Organization • Chemical: atoms make up molecules make up organelles • Cellular: semi-permeable membrane containing cytoplasm and organelles made up of molecules made
    [Show full text]
  • Lysosomal Biology and Function: Modern View of Cellular Debris Bin
    cells Review Lysosomal Biology and Function: Modern View of Cellular Debris Bin Purvi C. Trivedi 1,2, Jordan J. Bartlett 1,2 and Thomas Pulinilkunnil 1,2,* 1 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; [email protected] (P.C.T.); jjeff[email protected] (J.J.B.) 2 Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada * Correspondence: [email protected]; Tel.: +1-(506)-636-6973 Received: 21 January 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
    [Show full text]