The Birth of the Nucleus

Total Page:16

File Type:pdf, Size:1020Kb

The Birth of the Nucleus News Focus When and how did the command and control center of the eukaryotic cell arise? The Birth of the Nucleus LES TREILLES,FRANCE—What stands between tion missing.” proteins that are modified and shipped out of us and Escherichia coli is the nucleus. Biologists have long considered the nu- the nucleus to build ribosomes. Eukaryotic cells—the building blocks of peo- cleus the driving force behind the complex- The picture is far different in bacteria, in ple, plants, and amoebae—have these special- ity of eukaryotic cells. The Scottish which DNA, RNA, ribosomes, and proteins ized, DNA-filled command centers. Bacteria botanist Robert Brown discovered it 180 operate together within the main cell com- and archaea, the prokaryotes, don’t. The years ago while studying orchids under a partment. It’s a free-for-all in that as soon as nucleus’s arrival on the scene may have paved microscope. In his original paper, Brown the DNA code is transcribed into RNA, the way to the great diversity of multicellular called the novel cellular structure both an nearby proteins begin to translate that RNA life seen today, so the membrane-bound or- areola and a nucleus, but the latter name into a new protein. In eukaryotes, “the dou- ganelle fascinates scientists probing the evolu- stuck. Now, as then, the organelle’s com- ble membrane [of the nucleus] uncoupled tion of modern organ- plexity inspires awe. The nucleus is a “huge transcription and translation” and resulted in isms. “The question of evolutionary novelty,” says Eugene better quality control, says John Fuerst, a the origin of the cell nu- Koonin of the National Center for microbiologist at the University of Queens- cleus is intimately linked Biotechnology Information in land, Australia. As a result, RNA is modified to the question of our Bethesda, Maryland. as needed before it comes into contact with own origin,” says Patrick a ribosome outside the nucleus. Forterre, a molecular The nuclear distinction between prokary- biologist at the Univer- otes and eukaryotes shaped early specula- on December 19, 2008 sity of Paris-Sud in tion about the development of complex life. Orsay, France. Until the 1970s, two competing theories Last month, Forterre dominated the debate over early eukaryotic and two dozen micro- evolution. According to one, a subset of bac- biologists, evolutionary teria slowly developed eukaryotic features, biologists, cell biologists, and others such as the nucleus. In the other, eukaryotes met* here to hash out leading theo- came first, but over time, some of them lost ries about the origin of the nucleus. the nucleus and evolved a cell wall, spawn- One camp holds that the organelle ing modern-looking bacteria. is the result of a microbial merger. Then the Woesean revolution struck. By www.sciencemag.org Another contends that residual nu- looking at DNA sequence differences in the clei hidden away in some bacteria same gene across hundreds of microorgan- indicate that the crucial innovation isms, Carl Woese, a microbiologist at the is far older than commonly thought. University of Illinois, Urbana-Champaign, Perhaps the most radical theory of showed that “bacteria” were actually two all puts viruses at the center of this kingdoms, the bacteria proper and the ar- cellular development. chaea, which apparently arose some 2 bil- Downloaded from At the meeting’s end, the dis- lion years ago, millions of years before eu- cussions of the origin of the nucle- karyotes. The initial genetic analyses indi- us had left biologists with a key in- Precocious prokaryote. Bacteria aren’t supposed to have cated that archaea were more closely related sight: They had underestimated the nuclei, but Gemmata obscuriglobus does. A closer look to eukaryotes than were bacteria. This kin- complexity of the eukaryotic cell’s shows DNA (N, blue) inside a proper nuclear envelope (E, ship hinted that eukaryotes came from the 1.5–billion-year-old precursor. The green), as well as a cytoplasmic membrane (CM, red). seemingly simple archaeal stock. data presented indicated that this Recent comparisons of fully sequenced ancestral cell had more genes, more struc- Each nucleus in a eukaryotic cell consists microbial genomes have, however, added a tures, and more diverse biochemical of a double lipid-based membrane punctuated twist to this story: Eukaryotes contain both processes than previously imagined. by thousands of sophisticated protein com- archaeal and bacterial genes. Archaeal genes But when it came to accounting for how plexes called nuclear pores, which control tend to run processes involving DNA and the nucleus was born, no single hypothesis molecular traffic in and out of the organelle. RNA, so-called information functions; the bubbled to the top. “It’s like a puzzle,” says Inside, polymerases and other specialized bacterial genes are responsible for metabolic Forterre. “People try to put all the pieces to- enzymes transfer DNA’s protein-coding mes- and housekeeping chores. From the jumble gether, but we don’t know who is right or if sage to RNA. Other proteins modify the of genes, some evolutionary biologists have there is still some crucial piece of informa- strands of RNA to ensure that they bring an concluded that this division of labor arose accurate message to the ribosomes outside from the ancient symbiotic partnership be- * “The Origin of the Nucleus” was held in Les the nucleus. The nucleus also contains a nu- tween bacteria and archaea, a partnership Treilles, France, from 7 to 13 July. cleolus, a tightly packed jumble of RNA and that gave rise to eukaryotes. CREDIT: J. FUERST 766 6 AUGUST 2004 VOL 305 SCIENCE www.sciencemag.org Friendly mergers signaling molecules, such as kinases and G very little in it. A second sits in the center of Such a partnership may have been enough to proteins, in common with eukaryotes. the microbe and holds a dense collection of create the nucleus, according to Purificación genetic material—RNA and DNA mixed López-García and David Moreira of the Self-starters with DNA- and RNA-processing proteins. University of Paris-Sud. The two evolution- López-García and Moreira’s proposal as- The stuff in between—the cytoplasm—is full ary biologists speculate that the original sumes that bacteria and archaea appear ear- of proteins, ribosomes, and RNA. union between bacteria and archaea grew lier on the tree of life than eukaryotes, but At least one planctomycete has a double from metabolic requirements. The nucleus, Fuerst holds that the reverse is true. He is internal membrane around its DNA instead they further argue, arose as a way for these of the more typical single membrane. The endosymbionts to keep their metabolic membrane is not continuous but consists of chemistries from interfering with one anoth- pieces of folded membranes linked together. er. “You needed the [nuclear] membrane be- The gaps between the folds could indicate cause you have two competing pathways,” how nuclear pores got their start, says Fuerst. López-García explains. Explaining these structures has always In 1998, she and Moreira proposed that posed a sticking point for nuclear evolution. in life’s earliest days, methane-making ar- Without pores, the nucleus can’t function. chaea sometimes lived within bacteria that But nothing similar to these complex chan- depended on fermentation for sustenance: nels had been seen in bacteria before. At the the so-called syntrophic model. The rela- meeting, however, Fuerst showed dramatic tionship worked for the archaea because fer- electron micrographs of craterlike spots in mentation yielded a resource they needed, the internal membranes of planctomycetes. namely hydrogen. The bacterium may have These depressions closely resemble nuclear benefited because fermentation requires that pores, he says. Although nuclear pore genes hydrogen concentrations remain low. are hard to compare, Fuerst is encouraged López-García and Moreira hypothesize that a preliminary look at a planctomycete that Earth’s changing environmental condi- genome hints that the bacteria have primi- tions ultimately prompted a shift in the sym- tive versions of eukaryotic genes for some biosis. The archaeum gradually lost its ap- key nuclear pore proteins. petite for hydrogen, ceased making methane, “If you combine all the evidence, it on December 19, 2008 and instead relied more on the bacterial host Fruitful partnership. A bacterium akin to this makes a consistent picture,” he asserts. for other nutrients. The archaeum’s mem- myxobacterium may have paired off with an “Gemmata is a valid model for a non- brane, which had been critical for methano- archaeum, eventually evolving a nucleus. symbiotic origin of the eukaryotic nucleus.” genesis, became superfluous. At the same It may not be alone. There’s a recently dis- time, the outer bacterial membrane invaginat- convinced that eukaryote-like cells were covered phylum of sponge-dwelling bacteria ed the cellular compartment, eventually sur- around before bacteria and archaea or that also seem to have nuclei, says Fuerst, and rounding the archaeal DNA but excluding the emerged right at the time when these there are likely more, yet-to-be-discovered ribosomes. The change was advantageous to prokaryotes split off to form separate king- microbes with similar features. Bacteria with the bacteria, because in separating ribosomes doms of their own. Fuerst points to an un- nuclear pores and internal membranes, fea- www.sciencemag.org from the microbial chromosomes, it helped usual group of bacteria that he’s studied for tures typically considered eukaryote-specific, ensure more accurate conveyance of the the past decade. These remarkable microbes suggest that the nucleus was born much earli- DNA’s message. This set-up persisted and ul- have nuclei, or something akin to them, and er than traditionally thought. If Fuerst’s sce- timately evolved into the eukaryotic nucleus, may resemble the early cells that evolved in- nario is correct, “then the nucleus actually says López-García.
Recommended publications
  • Lectins in the Cell Nucleus
    Glycoblotogy vol. 1 no. 3 pp. 243-252, 1991 MINI REVIEW Lectins in the cell nucleus John L.Wang, James G.Laing and Richard L.Anderson Nuclear binding of neoglycoproteins implicates lectins Department of Biochemistry, Michigan State University, East Lansing, The existence of lectin molecules in the cell nucleus was first MI 48824, USA inferred from the binding of neoglycoproteins (see Hubert et al., 1989). These neoglycoproteins were derived by coupling specific saccharide structures onto a polypeptide backbone that normally bears no carbohydrate moiety [e.g. bovine serum albumin, Downloaded from https://academic.oup.com/glycob/article/1/3/243/610598 by guest on 27 September 2021 Key words: carbohydrate recognition/neoglycoproteins/ (BSA)]. Fluorescence microscopy and quantitative flow micro- nuclear glycoconjugates/S-type lectins/subcellular localization fluorometry were carried out with fluorescein-labelled neoglyco- proteins and, in certain instances, ultrastructural analyses were performed with mannose (Man)-conjugated ferritin. When Triton-permeabilized baby hamster kidney (BHK) cells Introduction were incubated with fluorescein-labelled neoglycoprotein, fluorescence was observed in both the cytoplasm and the There is a general consensus that the potential to encode nucleus (Seve et al., 1985, 1986). Strongest binding was observed information in carbohydrate structures is enormous. Many of the for neoglycoproteins bearing a-L-rhamnose, whose structure possibilities of carbohydrate recognition in cellular function have resembles that of /S-D-galactose (Gal) (Monsigny et al., 1983). been explored for extracellular molecules and events such as Significant binding (> 3-fold over fluorescein-conjugated BSA) specific cell-cell recognition and cell adhesion to the extracellular was also observed for BSA bearing glucose (Glc), A'-acetyl- matrix.
    [Show full text]
  • Rapamycin Maintains NAD+/NADH Redox Homeostasis in Muscle Cells
    www.aging-us.com AGING 2020, Vol. 12, No. 18 Priority Research Paper Rapamycin maintains NAD+/NADH redox homeostasis in muscle cells Zhigang Zhang1,2, He N. Xu3,6, Siyu Li1, Antonio Davila Jr2, Karthikeyani Chellappa2, James G. Davis2, Yuxia Guan4, David W. Frederick2, Weiqing Chu2, Huaqing Zhao5, Lin Z. Li3,6, Joseph A. Baur2,6 1College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China 2Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4Division of Trauma, Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA 5Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19140, USA 6Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA Correspondence to: Zhigang Zhang, Joseph A. Baur, Lin Z. Li; email: [email protected], [email protected], [email protected] Keywords: rapamycin, optical redox imaging, aging, NAD+/NADH ratio, redox state Received: May 18, 2020 Accepted: August 3, 2020 Published: September 22, 2020 Copyright: © 2020 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Rapamycin delays multiple age-related conditions and extends lifespan in organisms ranging from yeast to mice. However, the mechanisms by which rapamycin influences longevity are incompletely understood.
    [Show full text]
  • Karpova Structural and Functio
    The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Elizaveta A Karpova, Reynald Gillet To cite this version: Elizaveta A Karpova, Reynald Gillet. The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality?. Trends in Biochemical Sciences, Elsevier, 2018, 43 (12), pp.938-950. 10.1016/j.tibs.2018.09.017. hal-01903169 HAL Id: hal-01903169 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01903169 Submitted on 13 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Structural and Functional Organization of Ribosomal Compartment in the Cell: a Mystery or a Reality? Elizaveta A. Karpova1,2*and Reynald Gillet3* 1Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA 2Department of Physics, Division of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, Russia, 198904 3Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France. *Correspondence: [email protected] and [email protected] Key words: ribosome, polysome, cellular compartment, RNA polymerase, crystals, electron microscopy.
    [Show full text]
  • Lysosomal Biology and Function: Modern View of Cellular Debris Bin
    cells Review Lysosomal Biology and Function: Modern View of Cellular Debris Bin Purvi C. Trivedi 1,2, Jordan J. Bartlett 1,2 and Thomas Pulinilkunnil 1,2,* 1 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; [email protected] (P.C.T.); jjeff[email protected] (J.J.B.) 2 Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada * Correspondence: [email protected]; Tel.: +1-(506)-636-6973 Received: 21 January 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
    [Show full text]
  • Activation of a PP2A-Like Phosphatase and Dephosphorylation of Τ Protein Characterize Onset of the Execution Phase of Apoptosis
    Journal of Cell Science 111, 625-636 (1998) 625 Printed in Great Britain © The Company of Biologists Limited 1998 JCS7167 Activation of a PP2A-like phosphatase and dephosphorylation of τ protein characterize onset of the execution phase of apoptosis Jason C. Mills1,*, Virginia M.-Y. Lee1,2 and Randall N. Pittman1,3,† 1Cell Biology Graduate Group, 2Department of Pathology and Laboratory Medicine, and 3Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA *Present address: Department of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA †Author for correspondence (e-mail: [email protected]) Accepted 11 December 1997: published on WWW 9 February 1998 SUMMARY The execution phase is an evolutionarily conserved stage of protein becomes dephosphorylated near the onset of the apoptosis that occurs with remarkable temporal and execution phase. Low concentrations of okadaic acid morphological uniformity in most if not all cell types inhibit dephosphorylation suggesting a PP2A-like regardless of the condition used to induce death. phosphatase is responsible. Transfecting τ into CHO cells Characteristic features of apoptosis such as membrane to act as a ‘reporter’ protein shows a similar blebbing, DNA fragmentation, chromatin condensation, dephosphorylation of τ by a PP2A-like phosphatase during and cell shrinkage occur during the execution phase; the execution phase following induction of apoptosis with therefore, there is considerable interest in defining UV irradiation.
    [Show full text]
  • Bio102 Problems Translation
    Bio102 Problems Translation 1. If a eukaryotic protein needs to be secreted from the cell into the bloodstream, it must be synthesized A. in the nucleus. B. in the Golgi apparatus. C. by a soluble ribosome. D. on the rough ER. E. on the spliceosome. 2. For each event listed below, indicate if it happens in prokaryotes, eukaryotes, both or neither by circling your answer. Prokaryotes Eukaryotes tRNA molecules are transcribed by RNA polymerase III. Both Neither Prokaryotes Eukaryotes A terminator sequence causes replication to end. Both Neither Prokaryotes Eukaryotes The large subunit of the ribosome binds to the 5′ cap on the mRNA. Both Neither Prokaryotes tRNA molecules become ‘charged’ when an amino acid is covalently Eukaryotes attached. Both Neither Prokaryotes Some mRNA molecules contain more than one functional start Eukaryotes codon. Both Neither Prokaryotes Eukaryotes RNA molecules are made more stable by making them longer. Both Neither 3. If a protein is synthesized on a free ribosome (in other words, not part of the rough ER), which cellular compartment could that protein end up in? A. Cytosol B. Golgi C. Rough ER D. Lysosome E. Secreted outside the cell 4. Used tRNAs exit the ribosome from what site? A. P B. M C. E D. A E. T 5. The aminoacyl-tRNA synthetases are a set of enzymes that catalyze which chemical reaction? A. Termination of transcription B. Capping C. Translation D. Polyadenylation E. Charging 6. Which one regulatory sequence is found in RNA (not DNA)? A. Enhancer B. Terminator C. Origin D. Promoter E. Shine-Dalgarno sequence 7.
    [Show full text]
  • Induction of the Nicotinamide Riboside Kinase NAD+ Salvage Pathway in Skeletal Muscle of H6PDH KO Mice
    bioRxiv preprint doi: https://doi.org/10.1101/567297; this version posted March 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Induction of the nicotinamide riboside kinase NAD+ 2 salvage pathway in skeletal muscle of H6PDH KO mice 3 4 Craig L. Doig1,2, Agnieszka E. Zelinska1, Lucy A. Oakey1,2, Rachel S. Fletcher1,2, Yasir El 5 Hassan1,2, Antje Garten1, David Cartwright1,2, Silke Heising1,2, Daniel A Tennant1,2, David 6 Watson3, Jerzy Adamski4 & Gareth G. Lavery1,2. 7 8 1Institute of Metabolism and Systems Research, 2nd Floor IBR Tower, University of 9 Birmingham, Birmingham, B15 2TT, UK. 2Centre for Endocrinology, Diabetes and 10 Metabolism, Birmingham Health Partners, Birmingham, B15 2TH. 3Strathclyde Institute of 11 Pharmacy and Medical Sciences, Hamnett Wing John Arbuthnott Building, Glasgow G4 12 0RE. 4Helmholtz Zentrum Munchen GmbH, Ingolstadter Landstrasse 1, D-85764 13 Neuherberg. Germany. 14 15 Corresponding author: 16 Gareth G Lavery, PhD 17 Wellcome Trust Senior Research Fellow 18 Institute of Metabolism and Systems Research 19 University of Birmingham 20 Edgbaston 21 Birmingham, UK 22 B15 2TT 23 Tel: +44 121 414 3719 Fax: +44 121 415 8712 24 Email: [email protected] 25 26 Disclosure statement: The authors have nothing to disclose. 27 Abbreviated title: NAD+ metabolism and ER stress in skeletal muscle myopathy 28 Word Count: 5504; 7 Figures (Inclusive of 3 Supplemental) 1 bioRxiv preprint doi: https://doi.org/10.1101/567297; this version posted March 4, 2019.
    [Show full text]
  • New Approaches for Characterizing Mitochondrial Signaling in Response to Environmental Stress Grantee Meeting Cover 508
    11111\.\. National Institute of lillltV' Environmental Health Sciences New Approaches for Characterizing Mitochondrial Signaling in Response to Environmental Stress Grantee Meeting Wednesday, November 7, 2018 8:30a.m.– 5:00 p.m. NIEHS Building 101, Rodbell Auditorium Research Triangle Park, N.C. National Institutes of Health • U.S. Department of Health and Human Services Table of Contents Agenda .......................................................................................................................................................... 3 Presentation Abstracts .................................................................................................................................. 6 Participant List ............................................................................................................................................ 19 2 Agenda 3 ~ National Institute of lillilV Environmental Health Sciences New Approaches for Characterizing Mitochondrial Signaling in Response to Environmental Stress November 7, 2018 NIEHS Building 101, Rodbell Auditorium • 111 TW Alexander Drive, Research Triangle Park, N.C. AGENDA 7:30 a.m. Registration 8:30 a.m. Welcome and Introductions Rick Woychik, Deputy Director, NIEHS Grantee Updates – Session One Moderator: Kimberly McAllister, NIEHS 8:45 a.m. ROS Driven Mitochondrial-Telomere Dysfunction During Environmental Stress Ben Van Houten and Patricia Opresko, University of Pittsburgh 9:15 a.m. Inducible Mouse Models of Mitochondrial ROS Signaling and Environmental Stress Gerald
    [Show full text]
  • Interplay Between Compartmentalized NAD+ Synthesis and Consumption: a Focus on the PARP Family
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press SPECIAL SECTION: REVIEW Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family Michael S. Cohen Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97210, USA Nicotinamide adenine dinucleotide (NAD+) is an essential erate a polymer of ADP-ribose (ADPr), a process known as cofactor for redox enzymes, but also moonlights as a sub- poly-ADP-ribosylation or PARylation (more on this below) strate for signaling enzymes. When used as a substrate by (Fig. 1; Chambon et al. 1963, 1966; Fujimura et al. 1967a,b). signaling enzymes, it is consumed, necessitating the recy- Unlike NAD+-mediated redox reactions, this glycosidic cling of NAD+ consumption products (i.e., nicotinamide) cleavage reaction is irreversible and leads to the consump- via a salvage pathway in order to maintain NAD+ homeo- tion of NAD+. Consistent with this notion, in the 1970s it stasis. A major family of NAD+ consumers in mammalian was shown that NAD+ exhibits a high turnover in human cells are poly-ADP-ribose-polymerases (PARPs). PARPs cells (Rechsteiner et al. 1976). We now know that there are comprise a family of 17 enzymes in humans, 16 of which many “NAD+ consumers” (e.g., other PARP family mem- catalyze the transfer of ADP-ribose from NAD+ to macro- ber, sirtuins, etc.) beyond PARP1, which are found in molecular targets (namely, proteins, but also DNA and nearly all subcellular compartments, including the nucle- RNA). Because PARPs and the NAD+ biosynthetic en- us, cytoplasm, and mitochondria (Fig.
    [Show full text]
  • Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields
    Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields : effective new tool to control mesenchymal stem cells spontaneous Ca2+ oscillations Hanna Hanna To cite this version: Hanna Hanna. Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields : effective new tool to control mesenchymal stem cells spontaneous Ca2+ oscillations. Cellular Biology. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS493. tel- 01687535 HAL Id: tel-01687535 https://tel.archives-ouvertes.fr/tel-01687535 Submitted on 18 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS493 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD 11 ÉCOLE DOCTORALE N˚ 569 Innovation Thérapeutique : du Fondamental à l’Appliqué Spécialité : Pharmacotechnie et Biopharmacie Par Mr. Hanna Hanna Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields: effective new tool to control mesenchymal stem cells spontaneous calcium oscillations Thèse présentée et soutenue à Villejuif, le 13 Décembre 2016 Composition du Jury : M. Combettes Laurent Directeur de recherche, INSERM Président du jury M. O’Connor Rodney Professeur, Ecole des Mines de Saint Etienne Rapporteur M.
    [Show full text]
  • 3. Compartmentalisation of Metabolic Pathways • Functions of Cells An
    3. Compartmentalisation of Metabolic Pathways • Functions of Cells an... http://fblt.cz/en/skripta/ii-premena-latek-a-energie-v-bunce/3-kompartme... 3. Compartmentalisation of Metabolic Pathways Content: 1. Importance of compartmentalization 2. Biological membranes 3. Intracellular transport 4. Compartmentalization of metabolic pathways _ Importance of compartmentalization All reactions occurring in cells take place in certain space – compartment, which is separated from other compartments by means of semipermeable membranes. They help to separate even chemically quite heterogeneous environments and so to optimise the course of chemical reactions. Enzymes catalysing individual reactions often have different temperature and pH optimums and if there was only one cellular compartment a portion of enzymes would probably not function or them-catalysed reactions would not be sufficiently efficient. By dividing the cellular space, optimal conditions for individual enzymatically catalysed reactions are created. At the same time, cell also protects itself against the activity of lytic enzymes. For example, sealing the cellular digestion in lysosomes prevents an unwanted auto-digestion of other organelles within cell. A common processes that accompany the disruption of some of the compartments (like spilling the content of lysosomes or mitochondria) are necrosis or activation of apoptosis (the process of programmed cell death). Compartmentalization affects the regulation of metabolic pathways as well, making them more accurate and targeted and less interfering with each other. It is sometimes possible to regulate the course of the reaction at the point of entry of particular substrate into the compartment (transport across the membrane, often mediated by transport mechanisms). Despite its advantages, compartmentalization at the same time puts greater demand on the energy consumption.
    [Show full text]
  • A Cellular Compartment-Specific Database for Protein–Protein Interaction Network Analysis Daniel V
    Nucleic Acids Research 43, D485-D493, 2015 ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis Daniel V. Veres1,†, Da´ vid M. Gyurko´ 1,†, Benedek Thaler1,2, Kristo´ f Z. Szalay1, 3 3,4,5 1,* Da´ vid Fazekas , Tama´ s Korcsma´ ros and Peter Csermely 1Department of Medical Chemistry, Semmelweis University, Budapest, Hungary, 2Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary, 3Department of Genetics, Eo¨ tvo¨ s Lora´ nd University, Budapest, Hungary, 4TGAC, The Genome Analysis Centre, Norwich, UK and 5Gut Health and Food Safety Programme, Institute of Food Research, Norwich, UK ABSTRACT INTRODUCTION Here we present ComPPI, a cellular compartment- Biological processes are separated in the cellular and sub- specific database of proteins and their interactions cellular space, which helps their precise regulation. Com- enabling an extensive, compartmentalized protein– partmentalization of signalling pathways is a key regulator protein interaction network analysis (URL: http:// of several main biochemical processes, such as the nuclear ComPPI.LinkGroup.hu). ComPPI enables the user translocation-mediated activation of transcription factors (1). Several proteins are located in more than one subcel- to filter biologically unlikely interactions, where the lular localizations. As an example, IGFBP-2 is a predomi- two interacting proteins have no common subcel- nantly extracellular protein with a key role in insulin growth lular localizations and to predict novel properties, factor signalling (2), while its translocation into the nucleus such as compartment-specific biological functions. results in vascular endothelial growth factor-mediated an- ComPPI is an integrated database covering four giogenesis (3). Another important example is the HIF-1 species (S.
    [Show full text]