Female, 28 and 22 Years)

Total Page:16

File Type:pdf, Size:1020Kb

Female, 28 and 22 Years) Serum proteome: Proteins identified by their tryptic peptides in samples from two healthy donors (female, 28 and 22 years) Number of proteins identified: 2669 Protein accession number protein name O14874 [3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial precursor (EC 2.7.1.115) Q16654 [Pyruvate dehydrogenase [lipoamide]] kinase isozyme 4, mitochondrial precursor (EC 2.7.1.99) Q9P0J1 [Pyruvate dehydrogenase [Lipoamide]]-phosphatase 1, mitochondrial precursor (EC 3.1.3.43) (PDP 1) P61604 10 kDa heat shock protein, mitochondrial (Hsp10) (10 kDa chaperonin) Q15029 116 kDa U5 small nuclear ribonucleoprotein component (U5 snRNP- specific protein, 116 kDa) P62258 14-3-3 protein epsilon (14-3-3E) Q9C0C2 182 kDa tankyrase 1-binding protein Q9NRZ5 1-acyl-sn-glycerol-3-phosphate acyltransferase delta (EC 2.3.1.51) (1- AGP acyltransferase 4) Q9NRZ7 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma (EC 2.3.1.51) (1- AGP acyltransferase 3) Q01970 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta 3 (EC 3.1.4.11) P51178 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta 1 (EC 3.1.4.11) P16885 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma 2 (EC 3.1.4.11) O75038 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase-like 4 (EC 3.1.4.11) P09543 2',3'-cyclic-nucleotide 3'-phosphodiesterase (EC 3.1.4.37) (CNP) (CNPase). Q05823 2-5A-dependent ribonuclease (EC 3.1.26.-) (2-5A-dependent RNase) (Ribonuclease L) (RNase L) Q99460 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) Q9UNM6 26S proteasome non-ATPase regulatory subunit 13 (26S proteasome regulatory subunit S11) O00487 26S proteasome non-ATPase regulatory subunit 14 (26S proteasome regulatory subunit rpn11) Q16401 26S proteasome non-ATPase regulatory subunit 5 (26S proteasome subunit S5B) Q9UJ83 2-hydroxyphytanoyl-CoA lyase (EC 4.1.-.-) (2-HPCL) P18405 3-oxo-5-alpha-steroid 4-dehydrogenase 1 (EC 1.3.99.5) (Steroid 5- alpha-reductase 1) (SR type 1) P62847 40S ribosomal protein S24 P23396 40S ribosomal protein S3 P62241 40S ribosomal protein S8 Q9BRK5 45 kDa calcium-binding protein precursor (Cab45) (Stromal cell-derived factor 4) (SDF-4) P80404 4-aminobutyrate aminotransferase, mitochondrial precursor (EC 2.6.1.19) P32754 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27) (4HPPD) (HPD) (HPPDase) Q9NPB1 5'(3')-deoxyribonucleotidase, mitochondrial precursor (EC 3.1.3.-) P22557 5-aminolevulinate synthase, erythroid-specific, mitochondrial precursor (EC 2.3.1.37) P54619 5'-AMP-activated protein kinase, gamma-1 subunit (AMPK gamma-1 chain) (AMPKg) Q9UGJ0 5'-AMP-activated protein kinase, gamma-2 subunit (AMPK gamma-2 chain) (AMPK gamma2) (H91620p) Q9UPN4 5-azacytidine-induced protein 1 (Pre-acrosome localization protein 1) P49914 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) (5,10-methenyl- tetrahydrofolate synthetase) P46098 5-hydroxytryptamine 3 receptor precursor (5-HT-3) (Serotonin-gated ion channel receptor) (5-HT3R) O14841 5-oxoprolinase (EC 3.5.2.9) (5-oxo-L-prolinase) (Pyroglutamase) (5- OPase) P10809 60 kDa heat shock protein, mitochondrial precursor (Hsp60) (60 kDa chaperonin) (CPN60) P62906 60S ribosomal protein L10a (CSA-19) Q96L21 60S ribosomal protein L10-like P84098 60S ribosomal protein L19 P62910 60S ribosomal protein L32 P46777 60S ribosomal protein L5 P62917 60S ribosomal protein L8 Q9Y221 60S ribosome subunit biogenesis protein NIP7 homolog (KD93) Q01813 6-phosphofructokinase type C (EC 2.7.1.11) (Phosphofructokinase 1) (Phosphohexokinase) P08237 6-phosphofructokinase, muscle type (EC 2.7.1.11) (Phosphofructokinase 1) (Phosphohexokinase) P52209 6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44) O60733 85 kDa calcium-independent phospholipase A2 (EC 3.1.1.4) (iPLA2) (CaI- PLA2) Q92667 A kinase anchor protein 1, mitochondrial precursor (Protein kinase A anchoring protein 1) (PRKA1) Q8IZT6 Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) P02708 Acetylcholine receptor protein, alpha subunit precursor P11230 Acetylcholine receptor protein, beta subunit precursor Q04844 Acetylcholine receptor protein, epsilon subunit precursor P24752 Acetyl-CoA acetyltransferase, mitochondrial precursor (EC 2.3.1.9) (Acetoacetyl-CoA thiolase) (T2) Q13085 Acetyl-CoA carboxylase 1 (EC 6.4.1.2) (ACC-alpha) [Includes: Biotin carboxylase (EC 6.3.4.14)] O00763 Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) [Includes: Biotin carboxylase (EC 6.3.4.14)] Q9NR19 Acetyl-coenzyme A synthetase, cytoplasmic (EC 6.2.1.1) (Acetate--CoA ligase) O14639 Actin-binding LIM protein 1 (Actin-binding LIM protein family member 1) (abLIM-1) Q6H8Q1 Actin-binding LIM protein 2 (Actin-binding LIM protein family member 2) (abLIM2) Q9Y573 Actin-binding protein IPP (MIPP protein) P61158 Actin-like protein 3 (Actin-related protein 3) O15143 Actin-related protein O15511 Actin-related protein 2/3 complex subunit 5 Q8TDY3 Actin-related protein M2 (Actin-related protein T2) (ARP-T2) Q8N3C0 Activating signal cointegrator 1 complex subunit 3 (EC 3.6.1.-) (ASC-1 complex subunit p200) P35251 Activator 1 140 kDa subunit (Replication factor C large subunit) (A1 140 kDa subunit) O95433 Activator of 90 kDa heat shock protein ATPase homolog 1 (AHA1) (p38) P27037 Activin receptor type 2 precursor (EC 2.7.1.37) (Activin receptor type II) (ACTR-II) (ACTRIIA) P13798 Acylamino-acid-releasing enzyme (EC 3.4.19.1) (AARE) (Acyl-peptide hydrolase) (APH) P28330 Acyl-CoA dehydrogenase, long-chain specific, mitochondrial precursor (EC 1.3.99.13) (LCAD) P49748 Acyl-CoA dehydrogenase, very-long-chain specific, mitochondrial precursor (EC 1.3.99.-) (VLCAD) O14672 ADAM 10 precursor (EC 3.4.24.81) (A disintegrin and metalloproteinase domain 10) O43184 ADAM 12 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase domain 12) (Meltrin alpha) Q13444 ADAM 15 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase domain 15) Q9UKJ8 ADAM 21 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase domain 21) O75077 ADAM 23 precursor (A disintegrin and metalloproteinase domain 23) Q9UKF2 ADAM 30 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase domain 30) Q8TC27 ADAM 32 precursor (A disintegrin and metalloprotease domain 32) Q9UHI8 ADAMTS-1 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 1) P58397 ADAMTS-12 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 12) Q8TE57 ADAMTS-16 precursor (EC 3.4.24.-) Q8TE56 ADAMTS-17 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 17) Q8TE59 ADAMTS-19 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 19) O95450 ADAMTS-2 precursor (EC 3.4.24.14) (A disintegrin and metalloproteinase with thrombospondin motifs 2) O15072 ADAMTS-3 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 3) O75173 ADAMTS-4 precursor (EC 3.4.24.82) (A disintegrin and metalloproteinase with thrombospondin motifs 4) Q9UKP5 ADAMTS-6 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 6) Q9UKP4 ADAMTS-7 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 7) Q9P2N4 ADAMTS-9 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase with thrombospondin motifs 9) Q13367 Adapter-related protein complex 3 beta 2 subunit (Beta3B-adaptin) O14617 Adapter-related protein complex 3 delta 1 subunit (Delta-adaptin 3) (AP-3 complex delta subunit) P59780 Adapter-related protein complex 3 sigma 2 subunit (Sigma-adaptin 3b) (AP-3 complex sigma-3B subunit) Q9NVZ3 Adaptin ear-binding coat-associated protein 2 (NECAP-2) P25054 Adenomatous polyposis coli protein (APC protein) Q8TB61 Adenosine 3'-phospho 5'-phosphosulfate transporter 1 (PAPS transporter 1) Q08828 Adenylate cyclase type I (EC 4.6.1.1) (ATP pyrophosphate-lyase 1) (Ca(2+)) P00568 Adenylate kinase isoenzyme 1 (EC 2.7.4.3) (ATP-AMP transphosphorylase) (AK1) (Myokinase) Q01518 Adenylyl cyclase-associated protein 1 (CAP 1) Q969Q4 ADP-ribosylation factor-like protein 11 (ADP-ribosylation factor-like tumor suppressor protein 1) P40617 ADP-ribosylation factor-like protein 4A O75366 Advillin (p92) P51816 AF4/FMR2 family member 2 P51826 AF4 (AF4/FMR2 family member 3) (Protein LAF-4, Lymphoid nuclear protein related to AF4) P55196 Afadin (AF-6 protein) Q9Y2D8 Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain- interacting protein) P43652 Afamin precursor (Alpha-albumin) (Alpha-Alb) Q9Y4W6 AFG3-like protein 2 (EC 3.4.24.-) (Paraplegin-like protein) P16112 Aggrecan core protein precursor (Cartilage-specific proteoglycan core protein) Q9BSE5 Agmatinase, mitochondrial precursor (EC 3.5.3.11) (Agmatine ureohydrolase) (AUH) O00468 Agrin precursor O00170 AH receptor-interacting protein (AIP) (Aryl-hydrocarbon receptor- interacting protein) O75969 A-kinase anchor protein 3 (Protein kinase A-anchoring protein 3) (PRKA3) Q13023 A-kinase anchor protein 6 (Protein kinase A-anchoring protein 6) (PRKA6) Q9P0M2 A-kinase anchor protein 7 isoform gamma (Protein kinase A-anchoring protein 7 isoform gamma) Q99996 A-kinase anchor protein 9 (Protein kinase A-anchoring protein 9) (PRKA9) P43353 Aldehyde dehydrogenase 3B1 (EC 1.2.1.5) (Aldehyde dehydrogenase 7) Q96C23 Aldose 1-epimerase (EC 5.1.3.3) (Galactose mutarotase) (BLOCK25 protein) Q9UM73 ALK tyrosine kinase receptor precursor (EC 2.7.1.112) (Anaplastic lymphoma kinase) (CD246 antigen) Q6PD74 Alpha- and gamma-adaptin-binding
Recommended publications
  • Boards' Fodder
    boards’ fodder Cosmeceuticals Contributed by Elisabeth Hurliman, MD, PhD; Jennifer Hayes, MD; Hilary Reich MD; and Sarah Schram, MD. INGREDIENT FUNCTION MECHANISM ASSOCIATIONS/SIDE EFFECTS Vitamin A/ Antioxidant (reduces free Affects gene transcription Comedolysis epidermal thickening, dermal Derivatives (retinal, radicals, lowers concentration differentiation and growth of regeneration, pigment lightening retinol, retinoic of matrix metalloproteinases cells in the skin acid, provitamin reduces collagen degradation) Side effects: Irritation, erythema, desquamation A, asthaxanthin, Normalizes follicular Elisabeth Hurliman, lutein) epithelial differentiation and keratinization MD, PhD, is a PGY-4 dermatology resident Vitamin C (L Secondary endogenous Ascorbic acid: necessary L-ascorbic acid + alpha-tocopherol (vitamin E)= ascorbic acid, antioxidant in skin cofactor for prolylhydroxylase UVA and UVB protection at University of tetrahexyldecyl and lysyl hydroxylase Minnesota department ascorbate) Lightens pigment Zinc, resveratrol, L-ergothioneine and tyrosine add of dermatology. (affects melanogenesis) L-ascorbic acid: scavenges to vitamin C bioavailability free oxygen radicals, Protects Vitamin E from oxidation stimulates collagen synthesis Improves skin texture and hydration May interrupt melanogenesis by interacting with copper ions Vitamin E/ Primary endogenous antioxidant Prevents lipid peroxidation; Alpha tocopherol is the most physiologically Tocopherols, in skin scavenges free oxygen active isomer Jennifer Hayes, MD, Tocotrienols
    [Show full text]
  • The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
    THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells.
    [Show full text]
  • Proteomic Analysis of the Rad18 Interaction Network in DT40 – a Chicken B Cell Line
    Proteomic analysis of the Rad18 interaction network in DT40 – a chicken B cell line Thesis submitted for the degree of Doctor of Natural Sciences at the Faculty of Biology, Ludwig-Maximilians-University Munich 15th January, 2009 Submitted by Sushmita Gowri Sreekumar Chennai, India Completed at the Helmholtz Zentrum München German Research Center for Environmental Health Institute of Clinical Molecular Biology and Tumor Genetics, Munich Examiners: PD Dr. Berit Jungnickel Prof. Heinrich Leonhardt Prof. Friederike Eckardt-Schupp Prof. Harry MacWilliams Date of Examination: 16th June 2009 To my Parents, Sister, Brother & Rajesh Table of Contents 1. SUMMARY ........................................................................................................................ 1 2. INTRODUCTION ............................................................................................................. 2 2.1. MECHANISMS OF DNA REPAIR ......................................................................................... 3 2.2. ADAPTIVE GENETIC ALTERATIONS – AN ADVANTAGE ....................................................... 5 2.3. THE PRIMARY IG DIVERSIFICATION DURING EARLY B CELL DEVELOPMENT ...................... 6 2.4. THE SECONDARY IG DIVERSIFICATION PROCESSES IN THE GERMINAL CENTER .................. 7 2.4.1. Processing of AID induced DNA lesions during adaptive immunity .................. 9 2.5. TARGETING OF SOMATIC HYPERMUTATION TO THE IG LOCI ............................................ 10 2.6. ROLE OF THE RAD6 PATHWAY IN IG DIVERSIFICATION
    [Show full text]
  • Ligands of Therapeutic Utility for the Liver X Receptors
    molecules Review Ligands of Therapeutic Utility for the Liver X Receptors Rajesh Komati, Dominick Spadoni, Shilong Zheng, Jayalakshmi Sridhar, Kevin E. Riley and Guangdi Wang * Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; [email protected] (R.K.); [email protected] (D.S.); [email protected] (S.Z.); [email protected] (J.S.); [email protected] (K.E.R.) * Correspondence: [email protected] Academic Editor: Derek J. McPhee Received: 31 October 2016; Accepted: 30 December 2016; Published: 5 January 2017 Abstract: Liver X receptors (LXRs) have been increasingly recognized as a potential therapeutic target to treat pathological conditions ranging from vascular and metabolic diseases, neurological degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead compounds are already being tested in clinical trials for a variety of disease interventions. While more potent and selective LXR ligands continue to emerge from screening of small molecule libraries, rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing undesirable effects of LXR activation on lipid metabolism. This review provides a summary of known endogenous, naturally occurring, and synthetic ligands. The review also offers considerations from a molecular modeling perspective with which to design more specific LXRβ ligands based on the interaction energies of ligands and the important amino acid residues in the LXRβ ligand binding domain. Keywords: liver X receptors; LXRα; LXRβ specific ligands; atherosclerosis; diabetes; Alzheimer’s disease; cancer; lipid metabolism; molecular modeling; interaction energy 1.
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „The influence of free fatty acids on the development of liver inflammation“ Verfasser Mario Kuttke, B.Sc. angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 490 Studienrichtung lt. Studienblatt: Diplomstudium Molekulare Biologie Betreuerin / Betreuer: A.o.Univ.-Prof.Dipl.-Ing.Dr. Marcela Hermann Danksagung Zuerst möchte ich mich bei a.o.Univ.-Prof. Dipl.-Ing. Dr. Marcela Hermann für die Betreuung meiner Diplomarbeit bedanken. Besonderer Dank gilt a.o.Univ-Prof. Dr. Bettina Grasl-Kraupp für die fachliche Unterstützung und Betreuung während der praktischen Durchführung der Arbeit. Weiters bedanke ich mich bei Sandra Sagmeister, Therese Böhm, Nora Bintner, Waltraud Schrottmaier, Melanie Pichlbauer, Marzieh Nejabat, Teresa Riegler, Bettina Wingelhofer und Christiane Maier für die ausgezeichnete Zusammenarbeit im Labor und die Unterstützung in allen Lebenslagen. Birgit Mir-Karner, Helga Koudelka und Krystyna Bukowska danke ich für ihre Hilfsbereitschaft und für die kollegiale Zusammenarbeit. Mein größter Dank gilt meinen Eltern, Ursula und Heinz, und meiner Großmutter, Theresia, die mir mein Studium ermöglicht und mich immer unterstützt haben, sowie meinem Bruder, Alex, der in allen Lebenslagen für mich da ist. Table of Contents TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................. 4 HEPATOCELLULAR CARCINOMA (HCC)
    [Show full text]
  • The Anti-Inflammatory Role of Nuclear Receptors in Dendritic Cells
    The Anti-Inflammatory Role of Nuclear Receptors in Dendritic Cells A thesis submitted for the degree of Ph.D. By Mary Canavan B.Sc. (Hons), March 2012. Based on research carried out at School of Biotechnology, Dublin City University, Dublin 9, Ireland. Under the supervision of Dr. Christine Loscher. Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________________ ID No.:__54351789__ Date: ______________ ACKNOWLEDGEMENTS There are so many people that I would like to thank and definitely not enough space to say exactly how grateful I am to you all. I have been lucky enough to work with an amazing group of people over the past few years. Firstly I would like to thank Christine for all your help, support, enthusiasm and patience – and for telling me not to do anymore of those p50 blots! I have thoroughly enjoyed working with you and learning from you over the last few years. To everyone in the Lab – you are the reason why I have such great memories when I look back at my time in DCU. Whenever I think of failed experiments, tough days and tears, there is always a great memory of you guys that goes along with it.
    [Show full text]
  • Table S2. Enriched GO Categories in Biological Process for the Shared Degs
    Table S2. Enriched GO categories in biological process for the shared DEGs photosynthesis (GO ID:15979) Fold Change ProbeID AGI Col-0(R) pifQ(D) Name Description /Col-0(D) /Col-0(D) A_84_P19035 AT1G30380 17.07 4.9 PSAK; PSAK (PHOTOSYSTEM I SUBUNIT K) A_84_P21372 AT4G12800 8.55 3.57 PSAL; PSAL (photosystem I subunit L) PSBP-1; PSBP-1 (OXYGEN-EVOLVING A_84_P20343 AT1G06680 12.27 3.85 PSII-P; ENHANCER PROTEIN 2); poly(U) binding OEE2; LHCB6; LHCB6 (LIGHT HARVESTING COMPLEX A_84_P14174 AT1G15820 23.9 6.16 CP24; PSII); chlorophyll binding A_84_P11525 AT1G79040 16.02 4.42 PSBR; PSBR (photosystem II subunit R) FAD5; ADS3; FAD5 (FATTY ACID DESATURASE 5); A_84_P19290 AT3G15850 4.02 2.27 FADB; oxidoreductase JB67; GAPA (GLYCERALDEHYDE 3- GAPA; PHOSPHATE DEHYDROGENASE A A_84_P19306 AT3G26650 4.6 3.43 GAPA-1; SUBUNIT); glyceraldehyde-3-phosphate dehydrogenase A_84_P193234 AT2G06520 14.01 3.89 PSBX; PSBX (photosystem II subunit X) LHB1B1; LHB1B1 (Photosystem II light harvesting A_84_P160283 AT2G34430 89.44 32.95 LHCB1.4; complex gene 1.4); chlorophyll binding PSAN (photosystem I reaction center subunit A_84_P10324 AT5G64040 26.14 7.12 PSAN; PSI-N); calmodulin binding LHB1B2; LHB1B2 (Photosystem II light harvesting A_84_P207958 AT2G34420 41.71 12.26 LHCB1.5; complex gene 1.5); chlorophyll binding LHCA2 (Photosystem I light harvesting A_84_P19428 AT3G61470 10.91 5.36 LHCA2; complex gene 2); chlorophyll binding A_84_P22465 AT1G31330 32.37 6.58 PSAF; PSAF (photosystem I subunit F) chlorophyll A-B binding protein CP29 A_84_P190244 AT5G01530 16.45 5.27 LHCB4
    [Show full text]
  • Liver X Receptor &Beta
    Cell Death and Differentiation (2014) 21, 1914–1924 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd Liver X receptor b activation induces pyroptosis of human and murine colon cancer cells V Derange`re1,2,3, A Chevriaux1,2, F Courtaut1,3, M Bruchard1,3, H Berger1,3, F Chalmin1,3, SZ Causse1, E Limagne1,3,FVe´gran1,3, S Ladoire1,2,3, B Simon4, W Boireau4, A Hichami1,3, L Apetoh1,2,3, G Mignot1, F Ghiringhelli1,2,3,5 and C Re´be´*,1,2,5 Liver X receptors (LXRs) have been proposed to have some anticancer properties, through molecular mechanisms that remain elusive. Here we report for the first time that LXR ligands induce caspase-1-dependent cell death of colon cancer cells. Caspase- 1 activation requires Nod-like-receptor pyrin domain containing 3 (NLRP3) inflammasome and ATP-mediated P2 Â 7 receptor activation. Surprisingly, LXRb is mainly located in the cytoplasm and has a non-genomic role by interacting with pannexin 1 leading to ATP secretion. Finally, LXR ligands have an antitumoral effect in a mouse colon cancer model, dependent on the presence of LXRb, pannexin 1, NLRP3 and caspase-1 within the tumor cells. Our results demonstrate that LXRb, through pannexin 1 interaction, can specifically induce caspase-1-dependent colon cancer cell death by pyroptosis. Cell Death and Differentiation (2014) 21, 1914–1924; doi:10.1038/cdd.2014.117; published online 15 August 2014 Liver X receptor a (LXRa) and b belong to the nuclear receptor However, a common feature of these reports is that all family.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]