Book of Abstracts Ii Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
State of the Nation 2008 Canada’S Science, Technology and Innovation System
State of the Nation 2008 Canada’s Science, Technology and Innovation System Science, Technology and Innovation Council Science, Technology and Innovation Council Permission to Reproduce Except as otherwise specifically noted, the information in this publication may be reproduced, in part or in whole and by any means, without charge or further permission from the Science, Technology and Innovation Council (STIC), provided that due diligence is exercised in ensuring the accuracy of the information, that STIC is identified as the source institution, and that the reproduction is not represented as an official version of the information reproduced, nor as having been made in affiliation with, or with the endorsement of, STIC. © 2009, Government of Canada (Science, Technology and Innovation Council). Canada’s Science, Technology and Innovation System: State of the Nation 2008. All rights reserved. Aussi disponible en français sous le titre Le système des sciences, de la technologie et de l’innovation au Canada : l’état des lieux en 2008. This publication is also available online at www.stic-csti.ca. This publication is available upon request in accessible formats. Contact the Science, Technology and Innovation Council Secretariat at the number listed below. For additional copies of this publication, please contact: Science, Technology and Innovation Council Secretariat 235 Queen Street 9th Floor Ottawa ON K1A 0H5 Tel.: 613-952-0998 Fax: 613-952-0459 Web: www.stic-csti.ca Email: [email protected] Cat. No. 978-1-100-12165-9 50% ISBN Iu4-142/2009E recycled 60579 fiber State of the Nation 2008 Canada’s Science, Technology and Innovation System Science, Technology and Innovation Council Canada’s Science, Technology and Innovation System iii State of the Nation 2008 Canada’s Science, Technology and Innovation System Context and Executive Summary . -
Inertial Mass of an Elementary Particle from the Holographic Scenario
Document downloaded from: http://hdl.handle.net/10459.1/62944 The final publication is available at: https://doi.org/10.1142/S0217751X17500439 Copyright (c) World Scientific Publishing, 2017 Inertial mass of an elementary particle from the holographic scenario Jaume Gin´e Departament de Matem`atica, Universitat de Lleida, Catalonia, Spain. E{mail: [email protected] Abstract Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently it has been proposed that this mechanism is as follows: when an object accelerates in one direction a dy- namical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation in the other side is only slightly reduce by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always op- poses the acceleration, just like inertia, although the masses predicted are twice those expected, see [17]. In a later work an error was corrected so that its prediction improves to within 26% of the Planck mass, see [10]. In this paper the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle. Keywords: inertial mass; Unruh radiation; holographic scenario, Dark matter, Dark energy, cosmology. PACS 98.80.-k - Cosmology PACS 04.62.+v - Quantum fields in curved spacetime PACS 06.30.Dr - Mass and density 1 Introduction The equivalence principle introduced by Einstein in 1907 assumes the com- plete local physical equivalence of a gravitational field and a corresponding non- inertial (accelerated) frame of reference (Einstein was thinking of his famous elevator experiment). -
Quantization of Black Holes Is One of the Important Issues in Physics [1], and There Has Been No Satisfactory Solution Yet
Quantization of Black Holes Xiao-Gang He1, 2, 3, 4, ∗ and Bo-Qiang Ma1, 2, 4, † 1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 2Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617 3Institute of Particle Physics and Cosmology, Department of Physics, Shanghai JiaoTong University, Shanghai 200240 4Center for High-Energy Physics, Peking University, Beijing 100871 Abstract We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr’s idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can be also derived from an Ansatz of quantized entropy ∆S = 4πk∆R/λ, which was suggested in a previous work to unify the black hole entropy formula and Verlinde’s conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors. PACS numbers: 04.70.Dy, 03.67.-a, 04.70.-s, 04.90.+e arXiv:1003.2510v3 [hep-th] 5 Apr 2010 ∗Electronic address: [email protected] †Electronic address: [email protected] 1 The quantization of black holes is one of the important issues in physics [1], and there has been no satisfactory solution yet. -
Statistical Mechanics of Entropic Forces: Disassembling a Toy
Home Search Collections Journals About Contact us My IOPscience Statistical mechanics of entropic forces: disassembling a toy This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 Eur. J. Phys. 31 1353 (http://iopscience.iop.org/0143-0807/31/6/005) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.239.16.142 The article was downloaded on 06/12/2011 at 21:15 Please note that terms and conditions apply. IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 31 (2010) 1353–1367 doi:10.1088/0143-0807/31/6/005 Statistical mechanics of entropic forces: disassembling a toy Igor M Sokolov Institut fur¨ Physik, Humboldt-Universitat¨ zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany E-mail: [email protected] Received 21 June 2010, in final form 9 August 2010 Published 23 September 2010 Online at stacks.iop.org/EJP/31/1353 Abstract The notion of entropic forces often stays mysterious to students, especially to ones coming from outside physics. Although thermodynamics works perfectly in all cases when the notion of entropic force is used, no effort is typically made to explain the mechanical nature of the forces. In this paper we discuss the nature of entropic forces as conditional means of constraint forces in systems where interactions are taken into account as mechanical constraints and discuss several examples of such forces. We moreover demonstrate how these forces appear within the standard formalism of statistical thermodynamics and within the mechanical approach based on the Pope–Ching equation, making evident their connection with the equipartition of energy. -
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
Business of the City Council City of Mercer Island, Wa
AB 5444 BUSINESS OF THE CITY COUNCIL July 17, 2018 CITY OF MERCER ISLAND, WA Study Session REVIEW RFQ CRITERIA FOR TRANSIT Action: Discussion Only COMMUTER PARKING AND A PUBLIC- Review proposed RFQ criteria and Action Needed: PRIVATE, MIXED-USE DEVELOPMENT selection process. Motion Ordinance PROJECT ON THE TULLY’S/PARCEL 12 Resolution SITE DEPARTMENT OF City Manager (Julie Underwood) COUNCIL LIAISON n/a EXHIBITS 1. Request For Qualifications (RFQ) - Mercer Island Commuter Parking & Town Center Mixed-Use Project 2018-2019 CITY COUNCIL GOAL 1. Prepare for Light Rail/Improve Mobility APPROVED BY CITY MANAGER AMOUNT OF EXPENDITURE $ n/a AMOUNT BUDGETED $ n/a APPROPRIATION REQUIRED $ n/a SUMMARY At its meeting on June 5, the City Council authorized the City Manager to execute a Purchase and Sale Agreement with the Parkway Management Group, et al. to acquire the former Tully’s property, located at 7810 SE 27th Street (see AB 5434). This property will be combined with a portion of adjacent land the City already owns at Sunset Highway, known as Parcel 12. These properties could be developed through a public-private partnership to build an underground, transit commuter parking facility and potential mixed-use development (see AB 5418). The April 2018 Citizen Survey (see AB 5440) showed that 59% of respondents were unsatisfied with the availability of commuter parking, and the majority of respondents selected commuter parking as their top transportation priority. This public-private partnership presents an opportunity to provide much-needed commuter parking in Town Center, while significantly reducing the City’s contribution of funds (other than the Sound Transit contribution) by utilizing City-owned land in a key geographic location near the future East Link light rail station. -
IOP, Quarks Leptons and the Big Bang (2002) 2Ed Een
Quarks, Leptons and the Big Bang Second Edition Quarks, Leptons and the Big Bang Second Edition Jonathan Allday The King’s School, Canterbury Institute of Physics Publishing Bristol and Philadelphia c IOP Publishing Ltd 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice- Chancellors and Principals. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0806 0 Library of Congress Cataloging-in-Publication Data are available First edition printed 1998 First edition reprinted with minor corrections 1999 Commissioning Editor: James Revill Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fr´ed´erique Swist Marketing Executive: Laura Serratrice Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset in LATEX2ε by Text 2 Text, Torquay, Devon Printed in the UK by MPG Books Ltd, Bodmin, Cornwall Contents -
Cryptographer Sherry Shannon- Vanstone Says the Status Quo Isn’T Working for Women Entering STEM Fields
the Perimeter spring/summer 2017 Editor Natasha Waxman [email protected] Managing Editor Tenille Bonoguore Contributing Authors Tenille Bonoguore Colin Hunter Stephanie Keating Arthur B. McDonald Roger Melko Robert Myers Percy Paul Neil Turok Copy Editors Tenille Bonoguore Mike Brown Colin Hunter Stephanie Keating Sonya Walton Natasha Waxman Graphic Design Gabriela Secara Photo Credits Adobe Stock Tenille Bonoguore Jens Langen National Research Council of Canada Masoud Rafiei-Ravandi Gabriela Secara SNOLAB Tonia Williams Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 I f: 519.569.7611 02 IN THIS ISSUE 04/ We are innovators, Neil Turok 06/ Young women encouraged to follow curiosity to success in STEM, Tenille Bonoguore 08/ A quantum spin on passing a law, Colin Hunter 09/ Creating clean ‘quantum light’, Tenille Bonoguore 12/ How to make magic, Colin Hunter and Tenille Bonoguore 14/ Innovation tour delivers – and discovers – inspiration across Canada, Tenille Bonoguore 15/ Teacher training goes to Iqaluit, Stephanie Keating 16/ The (surprisingly) complex science of trapping muskrats, Roger Melko 18/ Fundamental science success deep underground, Arthur B. McDonald 20/ Hearing the universe’s briefest notes, Stephanie Keating 22/ Our home and innovative land, Colin Hunter 24/ Ingenious Canada 26/ Fostering the untapped curiosity of youth, Percy -
Uot History Freidland.Pdf
Notes for The University of Toronto A History Martin L. Friedland UNIVERSITY OF TORONTO PRESS Toronto Buffalo London © University of Toronto Press Incorporated 2002 Toronto Buffalo London Printed in Canada ISBN 0-8020-8526-1 National Library of Canada Cataloguing in Publication Data Friedland, M.L. (Martin Lawrence), 1932– Notes for The University of Toronto : a history ISBN 0-8020-8526-1 1. University of Toronto – History – Bibliography. I. Title. LE3.T52F75 2002 Suppl. 378.7139’541 C2002-900419-5 University of Toronto Press acknowledges the financial assistance to its publishing program of the Canada Council for the Arts and the Ontario Arts Council. This book has been published with the help of a grant from the Humanities and Social Sciences Federation of Canada, using funds provided by the Social Sciences and Humanities Research Council of Canada. University of Toronto Press acknowledges the finacial support for its publishing activities of the Government of Canada, through the Book Publishing Industry Development Program (BPIDP). Contents CHAPTER 1 – 1826 – A CHARTER FOR KING’S COLLEGE ..... ............................................. 7 CHAPTER 2 – 1842 – LAYING THE CORNERSTONE ..... ..................................................... 13 CHAPTER 3 – 1849 – THE CREATION OF THE UNIVERSITY OF TORONTO AND TRINITY COLLEGE ............................................................................................... 19 CHAPTER 4 – 1850 – STARTING OVER ..... .......................................................................... -
First Experimental Evidence for Superionic Ice 6 February 2018
First experimental evidence for superionic ice 6 February 2018 In a paper published today by Nature Physics, a research team from Lawrence Livermore National Laboratory (LLNL), the University of California, Berkeley and the University of Rochester provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying the 30-year-old prediction. Using shock compression, the team identified thermodynamic signatures showing that ice melts near 5000 Kelvin (K) at 200 gigapascals (GPa—2 million times Earth's atmosphere)—4000 K higher than the melting point at 0.5 megabar (Mbar) and almost the surface temperature of the sun. Time-integrated image of a laser-driven shock compression experiment to recreate planetary interior conditions and study the properties of superionic water. "Our experiments have verified the two main Credit: M. Millot/E. Kowaluk/J.Wickboldt/LLNL/LLE/NIF predictions for superionic ice: very high protonic/ionic conductivity within the solid and high melting point," said lead author Marius Millot, a physicist at LLNL. "Our work provides experimental Among the many discoveries on matter at high evidence for superionic ice and shows that these pressure that garnered him the Nobel Prize in predictions were not due to artifacts in the 1946, scientist Percy Bridgman discovered five simulations, but actually captured the extraordinary different crystalline forms of water ice, ushering in behavior of water at those conditions. This provides more than 100 years of research into how ice an important validation of state-of-the-art quantum behaves under extreme conditions. simulations using density-functional-theory-based molecular dynamics (DFT-MD)." One of the most intriguing properties of water is that it may become superionic when heated to "Driven by the increase in computing resources several thousand degrees at high pressure, similar available, I feel we have reached a turning point," to the conditions inside giant planets like Uranus added Sebastien Hamel, LLNL physicist and co- and Neptune. -
Winter to Printer
AMERICAN CRYSTALLOGRAPHIC ASSOCIATION NEWSLETTER Number 4 Winter 2003 Dick Marsh to receive first Trueblood Award ACA - Chicago - July 2004 Winter 2003 Inside front cover Diversified 1 Table of Contents / President's Column Winter 2003 Table of Contents President's Column Presidentʼs Column ............................................................1-2 In my first Guest Editoral: Arthur Ellis ...............................................2-3 column as ACA News from Canada ............................................................... 3 President last Web Watch / News from NIH & NSF................................... 4 spring, I remarked on the willingness Announcing the Worldwide PDB / PDB Poster Prize........6-8 of ACA members Mini Book Reviews ...........................................................8-9 to work on behalf What's on the Cover............................................................ 11 of our science and Dick Marsh - 1st Ken Trueblood Award........................11-12 our organization. Madeline Jacobs - ACA Public Service Award..............12-13 I didnʼt know the Nguyen-Huu Zuong - Charles Supper Award..................... 13 half of it! I have Calls for Nominations....................................................13-14 been so gratified Howard McMurdie Retires at 98 ........................................ 15 by the opportunity to see, again and William Cochran ('22-'03) .............................................16-18 again throughout Harold Wyckoff ('27-'03) ................................................... -
Colloidal Matter: Packing, Geometry, and Entropy Vinothan N
Colloidal matter: packing, geometry, and entropy Vinothan N. Manoharan Harvard John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge MA 02138 USA This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science volume 349 on August 8, 2015. doi: 10.1126/science.1253751 The many dimensions of colloidal matter. The self-assembly of colloids can be controlled by changing the shape, topology, or patchiness of the particles, by introducing attractions between particles, or by constraining them to a curved surface. All of the assembly phenomena illustrated here can be understood from the interplay between entropy and geometrical constraints. Summary of this review article Background: Colloids consist of solid or liquid particles, each about a few hundred nanometers in size, dispersed in a fluid and kept suspended by thermal fluctuations. While natural colloids are the stuff of paint, milk, and glue, synthetic colloids with well-controlled size distributions and interactions are a model system for understanding phase transitions. These colloids can form crystals and other phases of matter seen in atomic and molecular systems, but because the particles are large enough to be seen under an optical microscope, the microscopic mechanisms of phase transitions can be directly observed. Furthermore, their ability to spontaneously form phases that are ordered on the scale of visible wavelengths makes colloids useful building blocks for optical materials such as photonic crystals. Because the interactions between particles can be altered and the effects on structure directly observed, experiments on colloids offer a controlled approach toward understanding and harnessing self-assembly, a fundamental topic in materials science, condensed matter physics, and biophysics.