Book of Abstracts Vol. II

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Vol. II Symposium A Advanced Materials: From Fundamentals to Applications INVITED LECTURES 1. Potassium hydroxide 2. Potassium hydride 3. Potassium carbonate 4. Sodium hydroxide 5. Sodium hydride 6. Sodium carbonate 7. Calcium hydroxide 8. Calcium carbonate 9. Calcium sulphate 10. Calcium nitrate 11. Calcium chloride 12. Barium hydroxide 13. Barium carbonate 14. Barium sulphate 15. Barium nitrate 16. Barium chloride 17. Aluminium sulphate 18. Aluminium nitrate 19. Aluminium chloride 20. Alum 21. Potassium silicate 22. Potassium silicate 23. Potassium calcium silicate 24. Potassium barium silicate 25. Silicon fluoride 26. Ammonium potassium 27. Ethylene chloride compound Chemical symbols used by Dalton, 19th century ← Previous page: Distilling apparatus from John French’s The art of distillation, London 1651 Symposium A: Advanced Materials A - IL 1 Binuclear Complexes as Tectons in Designing Supramolecular Solid-State Architectures Marius Andruh University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory Str. Dumbrava Rosie nr. 23, 020464-Bucharest, Romania [email protected] We are currently developing a research project on the use of homo- and heterobinuclear complexes as building-blocks in designing both oligonuclear species and high-dimensionality coordination polymers with interesting magnetic properties. The building-blocks are stable binuclear complexes, where the metal ions are held together by compartmental ligands, or alkoxo- bridged copper(II) complexes. The binuclear nodes are connected through appropriate exo- - 3- III bidentate ligands, or through metal-containing anions (e. g. [Cr(NH3)2(NCS)4] , [M(CN)6] , M = Fe , CrIII). A rich variety of 3d-3d and 3d-4f heterometallic complexes, with interesting architectures and topologies of the spin carriers, has been obtained1. A particular case is the one concerning the 3d-4f binuclear nodes. The building principle is based on the employment of symmetrical (dicarboxylato anions, bis(4-pyridyl) derivatives) or of unsymmetrical spacers (e. g. the isonicotinate anion), which act selectively with the different (3d, 4f) metal ions. Following this strategy we were able to obtain coordination polymers containing three different spin carriers (2p-3d-4f; 3d-3d’-4f). The magnetic properties of the newly synthesized compounds have been investigated and will be discussed. Acknowledgements I am grateful for the contributions to this work to my coworkers Violeta Tudor, Ruxandra Gheorghe, Augustin M. Madalan, Geanina Marin, Andrei Cucos. References: 1. A. M. Madalan, H. W. Roesky, M. Andruh, M. Noltemeyer, N. Stanica, Chem. Commun., 2002, 1638; R. Gheorghe, M. Andruh, A. Müller, M. Schmidtmann, Inorg. Chem., 2002, 41, 5314; V. Tudor, G. Marin, V. Kravtsov, Y. A. Simonov, J. Lipkowski, M. Brezeanu, M. Andruh, Inorg. Chim. Acta, 2003, 353, 35; R. Ghorghe, M. Andruh, J. P. Costes, B. Donnadieu, Chem. Commun., 2003, 2778. 3 A - IL 2 ICOSECS 4 - Chemical Sciences in Changing Times: Visions, Challenges and Solutions Interphase in Fiber Reinforced Composites: Characterization and Design Gordana Bogoeva-Gaceva Faculty of Technology and Metallurgy, University Sts. Cyril and Methodius Skopje, Macedonia The properties of fiber reinforced composite materials largely depend on the nature and properties of interphase region. Interfacial phenomena control stress transfer to, and distribution between, the fibers and also govern mechanisms of damage accumulation and propagation. Recently the interphase is treated as a three-dimensional entity, extending further than the atomic dimensions of the boundary. The existence of an interphase, whose properties are different from those of the bulk matrix, is related to several factors, such as: specific adsorption and wetting behavior of fibers, chemical and physical interactions between the matrix and the fiber, specific polymer morphology and an existence of transcrystalline interface (in semicrystalline thermoplastic composites), etc. The nature and properties of the interface are unique to each fiber/matrix system, however, certain common features apply, and will be discussed in this paper. Interfacial analysis encompasses both chemical and mechanical characterization of the interfacial region. Different approaches to the characterization are developed, involving wetting studies, surface spectroscopies, microthermal analysis, differntial csanning calorimetry, atomic force microscopy, micromechanical tests, etc., in an attempt to describe and optimize the boundary region. However, the question of interfacial optimization is a complex one without simple answers, owing to the complexity of the chemical and physical nature of the interface and the variety of roles it is called on to perform. The possibilities of controlling interfacial strength by means of target-oriented variation of strength, structure and thickness of the interphase, created between differently treated (sized, plasma treated, untreated) glass and carbon fibers and thermoplastic and thermoset matrices, are discussed in this paper. In order to correlate the mechanical response with the characteristics of the interface, micro- and macromechanical methods were applied to investigate glass and carbon fiber composites with thermoplastic and thermoset matrices. 4 Symposium A: Advanced Materials A - IL 3 New Insight into the Role of Extra-Framework Cations in Zeolite Materials Chemistry V. Dondur 1Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 P.O. Box 137, 11000 Belgrade, Serbia and Montenegro, [email protected] An approach to preparation for a novel material is sometimes found in the developments of new structural elements, new arrangements or combinations of them, and new preparation technique as a total system. Microporous systems are becoming increasingly important as the host material for new arrangement of the guest materials. Properties of porous materials are intimately related to their framework topological features and chemical compositions. Currently, the most important porous materials are zeolites. Zeolites are micropurous aluminosilicate materials made up of 4- 3- (SiO4) and (AlO4) tetrahedral arranged in defined manner to give the material with an open framework structure of cavities and pores. Each aluminum atom in the framework carries a net negative charge which is balanced by a charge-balancing cation. Within zeolites, the cation exchange density is controlled by the framework Si/Al ratio. Presence of all these charged constituents produces a highly polar environment within the cavities of zeolites. Alumosilicate framework exerts a strong, localized electrostatic field that can alter the properties of charge- balancing cations. Therefore, the behavior of the cations inside the zeolite is often different then that of cations adsorbed, precipitated or exchanged into other porous solids. By considering cations as being located within specific sites in each or the many zeolite topologies, one can envision the oxide ions in the framework providing ligand centers which also impose some steric constraint around the cation. Thus, each zeolite offers its own unique crystal field, perhaps exerting multiple crystal field effects on different cation sites. In that manner, zeolites can serve as a host providing a high level of dispersion of cations, while offering multiple sites to environments. Being in these sites, cations are often coordinatively unsaturated. Differences in coordination around the cations in exchange sites could give to cation-zeolite system unusual and unexpected properties and shape selectivity associated with pores size. This paper reviews the results of investigation of the influence of extra-framework cations, their nature and amounts, on different zeolite’s features: magnetic and adsorption properties and the possibilities of phase transformations. Different zeolite topologies (SOD, LTA, FAU and ZSM5) with alkaline, alkaline earth, transition metal or large organic cations, were considered. As a result of alkaline cations incorporation into low pore sized zeolite SOD, the change of magnetic properties of this structure was noticed. High temperature transformation of zeolites modified by alkaline and alkaline-earth cations were performed. The obtained new phases were investigated using XRD, NMR, IR, Raman and thermal analysis methods. The influence of the presence of extra-framework cations and included salts on the mechanism of high temperature transformation into new ceramic materials was evidenced. The adsorption and catalytic possibilities of alkaline, alkaline earth, and transition metal cation-exchanged zeolites were investigated using microcalorimetric and spectroscopic (MAS and IR) methods. The cations were recognized as active sites for adsorption and forming of carbonyl-like, nitrosyl-like and amino complexes. Quantitative and energetic aspects of these reactions were studied by means of adsorption microcalorimetry and TPD/MAS. Additionally, the specific interactions of incorporated large organic cations with external zeolite surface active sites were studied. The adsorption of insecticides and pesticides on some modified zeolite structures was found. On the others, catalytic decomposition of these organic compounds happened, indicating the possibility of usage of modified zeolites in wastewater treatment. 5 A - IL 4 ICOSECS 4 - Chemical Sciences in Changing Times: Visions, Challenges and Solutions Tailoring the Properties of Highly Uniform Metallic Particles Dan V. Goia Clarkson University/Center for Advanced
Recommended publications
  • Memorial of the Republic of Croatia
    INTERNATIONAL COURT OF JUSTICE CASE CONCERNING THE APPLICATION OF THE CONVENTION ON THE PREVENTION AND PUNISHMENT OF THE CRIME OF GENOCIDE (CROATIA v. YUGOSLAVIA) MEMORIAL OF THE REPUBLIC OF CROATIA APPENDICES VOLUME 5 1 MARCH 2001 II III Contents Page Appendix 1 Chronology of Events, 1980-2000 1 Appendix 2 Video Tape Transcript 37 Appendix 3 Hate Speech: The Stimulation of Serbian Discontent and Eventual Incitement to Commit Genocide 45 Appendix 4 Testimonies of the Actors (Books and Memoirs) 73 4.1 Veljko Kadijević: “As I see the disintegration – An Army without a State” 4.2 Stipe Mesić: “How Yugoslavia was Brought Down” 4.3 Borisav Jović: “Last Days of the SFRY (Excerpts from a Diary)” Appendix 5a Serb Paramilitary Groups Active in Croatia (1991-95) 119 5b The “21st Volunteer Commando Task Force” of the “RSK Army” 129 Appendix 6 Prison Camps 141 Appendix 7 Damage to Cultural Monuments on Croatian Territory 163 Appendix 8 Personal Continuity, 1991-2001 363 IV APPENDIX 1 CHRONOLOGY OF EVENTS1 ABBREVIATIONS USED IN THE CHRONOLOGY BH Bosnia and Herzegovina CSCE Conference on Security and Co-operation in Europe CK SKJ Centralni komitet Saveza komunista Jugoslavije (Central Committee of the League of Communists of Yugoslavia) EC European Community EU European Union FRY Federal Republic of Yugoslavia HDZ Hrvatska demokratska zajednica (Croatian Democratic Union) HV Hrvatska vojska (Croatian Army) IMF International Monetary Fund JNA Jugoslavenska narodna armija (Yugoslav People’s Army) NAM Non-Aligned Movement NATO North Atlantic Treaty Organisation
    [Show full text]
  • Decolorization of Reactive Orange 16 Via Ferrate(VI) Oxidation Assisted by Sonication
    Turkish Journal of Chemistry Turk J Chem (2017) 41: 577 { 586 http://journals.tubitak.gov.tr/chem/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/kim-1701-8 Decolorization of reactive orange 16 via ferrate(VI) oxidation assisted by sonication Serkan S¸AHINKAYA_ ∗ Department of Environmental Engineering, Faculty of Engineering and Architecture, Nev¸sehirHacı Bekta¸sVeli University, Nev¸sehir,Turkey Received: 02.01.2017 • Accepted/Published Online: 24.03.2017 • Final Version: 05.09.2017 Abstract: The decolorization of azo dye C.I. reactive orange 16 (RO 16) via ferrate(VI) and sono-ferrate(VI) methods, which is the combination of the ferrate(VI) oxidation method with sonication, has been achieved in the present study. The influences of some important operating parameters, which are the initial pH, the concentration of potassium ferrate(VI) (K 2 FeO 4) and the RO 16 dye, and ultrasonic density (for only the sono-ferrate(VI) method), on the color removal have −1 been investigated. The optimum conditions have been determined as pH = 7 and [K 2 FeO 4 ] = 50 mg L for the −1 −1 individual ferrate(VI) oxidation method and pH = 7 and [K 2 FeO 4 ] = 50 mg L by direct sonication at 0.50 W mL ultrasonic density and 20 kHz fixed frequency for the sono-ferrate(VI) method. The color removal efficiencies were 85% by ferrate(VI) method and 91% by sono-ferrate(VI) method. Kinetic studies were also performed for the decolorization of RO 16 under the optimized conditions at room temperature. It was seen that the oxidative decolorization of RO 16 via the sono-ferrate(VI) method happened more rapidly because of the production of OH • radical through sonication compared to the individual ferrate(VI) method.
    [Show full text]
  • Inertial Mass of an Elementary Particle from the Holographic Scenario
    Document downloaded from: http://hdl.handle.net/10459.1/62944 The final publication is available at: https://doi.org/10.1142/S0217751X17500439 Copyright (c) World Scientific Publishing, 2017 Inertial mass of an elementary particle from the holographic scenario Jaume Gin´e Departament de Matem`atica, Universitat de Lleida, Catalonia, Spain. E{mail: [email protected] Abstract Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently it has been proposed that this mechanism is as follows: when an object accelerates in one direction a dy- namical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation in the other side is only slightly reduce by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always op- poses the acceleration, just like inertia, although the masses predicted are twice those expected, see [17]. In a later work an error was corrected so that its prediction improves to within 26% of the Planck mass, see [10]. In this paper the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle. Keywords: inertial mass; Unruh radiation; holographic scenario, Dark matter, Dark energy, cosmology. PACS 98.80.-k - Cosmology PACS 04.62.+v - Quantum fields in curved spacetime PACS 06.30.Dr - Mass and density 1 Introduction The equivalence principle introduced by Einstein in 1907 assumes the com- plete local physical equivalence of a gravitational field and a corresponding non- inertial (accelerated) frame of reference (Einstein was thinking of his famous elevator experiment).
    [Show full text]
  • Quantization of Black Holes Is One of the Important Issues in Physics [1], and There Has Been No Satisfactory Solution Yet
    Quantization of Black Holes Xiao-Gang He1, 2, 3, 4, ∗ and Bo-Qiang Ma1, 2, 4, † 1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 2Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617 3Institute of Particle Physics and Cosmology, Department of Physics, Shanghai JiaoTong University, Shanghai 200240 4Center for High-Energy Physics, Peking University, Beijing 100871 Abstract We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr’s idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can be also derived from an Ansatz of quantized entropy ∆S = 4πk∆R/λ, which was suggested in a previous work to unify the black hole entropy formula and Verlinde’s conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors. PACS numbers: 04.70.Dy, 03.67.-a, 04.70.-s, 04.90.+e arXiv:1003.2510v3 [hep-th] 5 Apr 2010 ∗Electronic address: [email protected] †Electronic address: [email protected] 1 The quantization of black holes is one of the important issues in physics [1], and there has been no satisfactory solution yet.
    [Show full text]
  • Statistical Mechanics of Entropic Forces: Disassembling a Toy
    Home Search Collections Journals About Contact us My IOPscience Statistical mechanics of entropic forces: disassembling a toy This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 Eur. J. Phys. 31 1353 (http://iopscience.iop.org/0143-0807/31/6/005) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.239.16.142 The article was downloaded on 06/12/2011 at 21:15 Please note that terms and conditions apply. IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 31 (2010) 1353–1367 doi:10.1088/0143-0807/31/6/005 Statistical mechanics of entropic forces: disassembling a toy Igor M Sokolov Institut fur¨ Physik, Humboldt-Universitat¨ zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany E-mail: [email protected] Received 21 June 2010, in final form 9 August 2010 Published 23 September 2010 Online at stacks.iop.org/EJP/31/1353 Abstract The notion of entropic forces often stays mysterious to students, especially to ones coming from outside physics. Although thermodynamics works perfectly in all cases when the notion of entropic force is used, no effort is typically made to explain the mechanical nature of the forces. In this paper we discuss the nature of entropic forces as conditional means of constraint forces in systems where interactions are taken into account as mechanical constraints and discuss several examples of such forces. We moreover demonstrate how these forces appear within the standard formalism of statistical thermodynamics and within the mechanical approach based on the Pope–Ching equation, making evident their connection with the equipartition of energy.
    [Show full text]
  • Danube Navigation
    pistribüted t0 the C0 u n ci1 C. 4 4 4 (a) M. 164 (a). 1 9 2 5 . VIII. and the Members of the League.] v ' — G e n e v a , August 20th, 1 9 2 5 . LEAGUE OF NATIONS REPORT ON DANUBE NAVIGATION SUBMITTED TO THE ADVISORY AND TECHNICAL COMMITTEE FOR COMMUNICATIONS AND TRANSIT OF THE LEAGUE OF NATIONS BY WALKER D. HINES (with the aid of Major Brehon Somervell) TABLE OF CONTENTS. Part 1. P ag e I Introduction ............................................................................................................................................. 11 II, P a s t a n d P r e s e n t U t i l i s a t i o n o f t h e R i v e r .......................................................................................................... 11 Freight traffic ..................................................................................................................................... 11 Total for 1911, 1923, 1924. Increase expected in 1925. Exports, imports and internal traffic of riparian States. Traffic by flag, 1923 and 1924. Comparison with traffic on Rhine Passenger traffic ..................................................................................................................................... 14 III. T h e R i v e r F l e e t s , t h e i r N a t i o n a l i t y a n d C a p a c i t y ................................................................................ 15 Pre-war situation. Present situation. Changes brought about by the war. Present Danube Fleet by flag. Introduction of self-propelled barges. Greater division of shipping interests. Co-operation among navigation companies. IV. S c h e m e o f A n a l y s i s ................................................................................................................................................................................. 16 V. T h e G e n e r a l C h a r a c t e r i s t i c s o f D a n u b e T r a f f i c ..........................................................................................
    [Show full text]
  • Colloidal Matter: Packing, Geometry, and Entropy Vinothan N
    Colloidal matter: packing, geometry, and entropy Vinothan N. Manoharan Harvard John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge MA 02138 USA This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science volume 349 on August 8, 2015. doi: 10.1126/science.1253751 The many dimensions of colloidal matter. The self-assembly of colloids can be controlled by changing the shape, topology, or patchiness of the particles, by introducing attractions between particles, or by constraining them to a curved surface. All of the assembly phenomena illustrated here can be understood from the interplay between entropy and geometrical constraints. Summary of this review article Background: Colloids consist of solid or liquid particles, each about a few hundred nanometers in size, dispersed in a fluid and kept suspended by thermal fluctuations. While natural colloids are the stuff of paint, milk, and glue, synthetic colloids with well-controlled size distributions and interactions are a model system for understanding phase transitions. These colloids can form crystals and other phases of matter seen in atomic and molecular systems, but because the particles are large enough to be seen under an optical microscope, the microscopic mechanisms of phase transitions can be directly observed. Furthermore, their ability to spontaneously form phases that are ordered on the scale of visible wavelengths makes colloids useful building blocks for optical materials such as photonic crystals. Because the interactions between particles can be altered and the effects on structure directly observed, experiments on colloids offer a controlled approach toward understanding and harnessing self-assembly, a fundamental topic in materials science, condensed matter physics, and biophysics.
    [Show full text]
  • KORICE MICO SED 2016.Cdr
    Third International Conference Higher Education in Function of Sustainable Development of Tourism in Serbia and Western Balkans within 9th International Conference “Science and Higher Education in Function of Sustainable Development – SED 2015” PAPER PROCEEDINGS September 2016, Užice, Serbia 3rd International Conference: "Higher education in function of development of Page i tourism in Serbia and Western Balkans" Publisher Business and Technical College of Vocational Studies, Užice 34 St. Sava’ Square 31 000 Užice, Serbia www.vpts.edu.rs For publisher Ivana Ćirović, Ph.D, Director Editors Milutin Đuričić, Ph.D Ivana Ćirović, Ph.D Nenad Milutinović, M.Sc Technical editing Nenad Milutinovic, M.Sc Design Miroslav Drašković Printed by “GRAFOPLAST PLUS”, Užice Circulation 250 ISBN 978-86-83573-84-4 3rd International Conference: "Higher education in function of development of Page ii tourism in Serbia and Western Balkans" PROGRAM BOARD 1. Milutin Djuricic, Ph.D, professor of vocational studies, Business Technical College of Vocational Studies, Uzice (Serbia) 2. Milena Marjanović, Ph.D, Higher Business School of Vocational Studies, Leskovac (Serbia) 3. Mr Dragan Stojanovic, Higher Business School of Vocational Studies, Leskovac (Serbia) 4. Vladimir Senic, Ph.D, University of Kragujevac, Faculty of hotel management and tourism, Vrnjacka Banja (Serbia) 5. Marija Mandaric, Ph.D, University of Kragujevac, Faculty of hotel management and tourism, Vrnjacka Banja (Serbia) 6. Miroslav Radjen, M.Sc, Tourism Organization of Western Serbia, Uzice (Serbia) 7. Miroslav Ivanovic, Ph.D, Tourism Organization of Western Serbia, Uzice (Serbia) 8. Dragoslav Nikolić, Regional Chamber of Commerce, Uzice (Serbia) 9. Mirjana Krdzic, Regional Chamber of Commerce, Uzice (Serbia) 10. Dragica Samardzic, Chamber of Commerce of Vojvodina, Novi Sad (Serbia) 11.
    [Show full text]
  • Nov/Dec 2020
    CERNNovember/December 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition ADVANCING Welcome to the digital edition of the November/December 2020 issue of CERN Courier. CAVITY Superconducting radio-frequency (SRF) cavities drive accelerators around the world, TECHNOLOGY transferring energy efficiently from high-power radio waves to beams of charged particles. Behind the march to higher SRF-cavity performance is the TESLA Technology Neutrinos for peace Collaboration (p35), which was established in 1990 to advance technology for a linear Feebly interacting particles electron–positron collider. Though the linear collider envisaged by TESLA is yet ALICE’s dark side to be built (p9), its cavity technology is already established at the European X-Ray Free-Electron Laser at DESY (a cavity string for which graces the cover of this edition) and is being applied at similar broad-user-base facilities in the US and China. Accelerator technology developed for fundamental physics also continues to impact the medical arena. Normal-conducting RF technology developed for the proposed Compact Linear Collider at CERN is now being applied to a first-of-a-kind “FLASH-therapy” facility that uses electrons to destroy deep-seated tumours (p7), while proton beams are being used for novel non-invasive treatments of cardiac arrhythmias (p49). Meanwhile, GANIL’s innovative new SPIRAL2 linac will advance a wide range of applications in nuclear physics (p39). Detector technology also continues to offer unpredictable benefits – a powerful example being the potential for detectors developed to search for sterile neutrinos to replace increasingly outmoded traditional approaches to nuclear nonproliferation (p30).
    [Show full text]
  • Energy Efficiency in the MENA Region Good Practices from ACWUA Members
    READER Energy Efficiency in the MENA region Good practices from ACWUA members i Reader Energy Efficiency in the MENA region Good practices from ACWUA members Published by The Arab Countries Water Utilities Association (ACWUA) under the guidance of the ACWUA Task Force Energy Efficiency with support from the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices ACWUA in Amman, Jordan GIZ in Bonn and Eschborn, Germany Implemented by Strengthening the MENA water sector through regional networking and training (ACWUA WANT) program www.mena-water.net or www.acwua.org/training or www.acwua.org/node/413 Arab Countries Water Utilities Association (ACWUA) 19A, Umm Umarah Street Al-Rashed Area P.O.Box 962449 Amman 11196 Jordan and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH 65760 Eschborn, Germany Dag-Hammarskjöld-Weg 1-5 Division 3300 Near East On behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ) Editor Hans Hartung, Weikersheim. Germany Program supervision Thomas Petermann (GIZ Germany) Abdellatif Biad (ONEE, Chairperson ACWUA Task Force Energy Efficiency) Mustafa Nasereddin (ACWUA Jordan) Photo credits Thomas Petermann Disclaimer The material in this publication was written by, and reflects the views of the authors. None of the material implies an opinion of any form by GIZ or ACWUA. The information in this book is distributed on an “As is” basis, without warranty. Copyrights September 2015 ACWUA and GIZ ii ENERGY EFFICIENCY READER Energy Efficiency – A strategic objective and assigned target of ACWUA In most cases energy is the number one cost within all water and wastewater service utilities O&M costs, and a controllable one at that.
    [Show full text]
  • Holographic Theory, and Emergent Gravity As an Entropic Force
    Holographic theory, and emergent gravity as an entropic force Liu Tao December 9, 2020 Abstract In this report, we are going to study the holographic principle, and the possibility of describing gravity as an entropic force, independent of the details of the microscopic dynamics. We will first study some of the deep connections between Gravity laws and thermodynamics, which motivate us to consider gravity as an entropic force. Lastly, we will investigate some theoretical criticisms and observational evidences on emergent gravity. 1 Contents 1 Introduction3 2 Black holes thermodynamics and the holographic principle3 2.1 Hawking temperature, entropy..........................3 2.1.1 Uniformly accelerated observer and the Unruh effect.........3 2.1.2 Hawking temperature and black hole entropy..............6 2.2 Holographic principle...............................7 3 Connection between gravity and thermodynamics8 3.1 Motivations (from ideal gas and GR near event horizon)...........8 3.2 Derive Einstein's law of gravity from the entropy formula and thermodynamics 10 3.2.1 the Raychaudhuri equation........................ 10 3.2.2 Einstein's equation from entropy formula and thermodynamics.... 11 4 Gravity as an entropic force 13 4.1 General philosophy................................ 13 4.2 Entropic force in general............................. 13 4.3 Newton's law of gravity as an entropic force.................. 14 4.4 Einstein's law of gravity as an entropic force.................. 15 4.5 New interpretations on inertia, acceleration and the equivalence principle.. 17 5 Theoretical and experimental criticism 18 5.1 Theoretical criticism............................... 18 5.2 Cosmological observations............................ 19 20section.6 2 1 Introduction The holographic principle was inspired by black hole thermodynamics, which conjectures that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected for any extensive quantities.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title A Hybrid Density Functional Theory for Solvation and Solvent-Mediated Interactions Permalink https://escholarship.org/uc/item/4p6713xb Author Jin, Zhehui Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE A Hybrid Density Functional Theory for Solvation and Solvent-Mediated Interactions A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical and Environmental Engineering by Zhehui Jin March 2012 Dissertation Committee: Dr. Jianzhong Wu, Chairperson Dr. Ashok Mulchandani Dr. David Kisailus Copyright by Zhehui Jin 2012 The Dissertation of Zhehui Jin is approved: _________________________________________________ _________________________________________________ _________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements This thesis is the result of five years of work whereby I have been accompanied and supported by many people. I would like to express the most profound appreciation to my advisor, Prof. Jianzhong Wu. He led me to the field of statistical thermodynamics and guided me to define research problems and solve these problems through theoretical approaches. I have been greatly benefited from his wide knowledge and logical way of thinking and gained fruitful achievements during my Ph.D. study. His enthusiasms on research and passion for providing high-quality research works have made a deep impression on me. I am deeply grateful to Dr. Yiping Tang, Prof. Zhengang Wang, Dr. De-en Jiang, Dr. Dong Meng, and Dr. Douglas Henderson who have assisted my research work and led me to different exciting fields of study.
    [Show full text]