4.5 Productivity Analysis and Hydrogeological Map 4.5.1

Total Page:16

File Type:pdf, Size:1020Kb

4.5 Productivity Analysis and Hydrogeological Map 4.5.1 The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Main Report- Chapter 4 Hydrogeology 4.5 Productivity Analysis and Hydrogeological Map 4.5.1 Productivity Analysis Productivity distribution of groundwater was produced by taking consideration of the geological condition, yield of existing wells, rainfall, topographic feature and the result of satellite image analysis (1) Yield of existing wells The distribution of well yield in IDB is presented in Figure 4-21. This map includes the results of the test borehole drilling in this study. The provided yield values were sometimes too high and there were possibility of unsuitable way of the pumping test and analysis method applied. Nevertheless the production of the yield distribution map has some degree of positive meaning because the feature of relative productivity in whole IDB can be read from this map. The yield distribution map is shown in Figure 4-21. Figure 4-21 Well Yield Distribution of Existing Wells 4-32 The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Main Report- Chapter 4 Hydrogeology (2) Rainfall Average annual rainfall for 30 years up to 1970th was shown in Chapter 2. (3) Topography Recharge areas or direction of water flow are read from topography. Top of mountain and steep slope area are considered to be impossible to develop groundwater. These areas are eliminated as masked area. (4) Satellite Image Analysis Mainly VSW index map was referred for this analysis. Comparison between the VSW index map and the existing geological map can be used for the interpretation of productivity analysis. In the VSW map (refer to Figure 4-8), Blue colour shows water (moisture), Green colour shows vegetation, Red colour shows soil, basically. Other colours should be interpreted shown as below. Especially, in this area, lakes and swamps show the different colours. Table 4-13 Interpretation of VSW Map Color Phenomenon Representative place Lake Babati, Lake Singida, some Blue Water other small lakes Dark green Wet forest Several part (not large area) Light green Forest, congestion of trees Uyui, Sikonge, Manyoni Orange Sand area Around Singida Bare land Sediment in Massai Steppe Red Volcanic ash Northern part of IDB Lake Natron, Lake Eyasi, Lake Purple-red Saline lake, swamp Manyara, Bahi swamp, part of Bubu river Mbuga clay Several places at locally low area Purple Basaltic rocks Around volcanoes Groundwater productivity was estimated from geological condition and above data. Groundwater productivity classification map for hydrogeological map is shown in Figure 4-22. The feature of productivity distribution is assembled in Table 4-14. 4-33 32 33 34 Longitude (degree) 35 36 37 -2 -2 !. Loliondo 4 Reso on the Groundwater The Study -3 -3 Maswa !. Monduli Karatu !. !. "/ Meatu !. Arusha Kishapu Shimyanga !. "/ urces Development and Management Developmentand Management urces !. Mbulu -4 -4 Legend Kiomboi !. "/ Babati 4-34 Productivity !. !. Nzega Igunga Excellent (over 20 m3/h) !. !. Very good (10 - 20 m3/h) Good (8 - 15 m3/h) Singida Latitude (degree) Fair A (5 - 10 m3/h) "/ !. Fair B (3 - 7 m3/h) -5 "/ Kondoa -5 -Main Report- Fair C (2 - 4 m3/h) Poor (1 - 3 m3/h) !. Very Poor (0.5 - 1.5 m3/h) Kiteto Undevelopable Basin Drainage Internal in the Lake, Swamp Hydrogeology 4 Chapter !. Mbuga Clay Manyoni "/ Region Capital -6 -6 !. District Capital Dodoma Sub Basin "/ Major Fault 015 306090120 Kilometers 32 33 34 35 36 37 Figure 4-22 Groundwater Productivity Classification Map for Hydrogeological Map The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Main Report- Chapter 4 Hydrogeology Table 4-14 Groundwater Productivity Condition in IDB Estimated Productivity Place Description (m3/h) Along large scale fault Fracture zone related to the Great Excellent over 20 Rift Valley System The belt area from west of Boundary area between granitic rock Mbulu district through east of area and Usagaran metamorphic Hanang disrtrict and west of rock area. Babati district to Kondoa district Very Good 10 - 20 Foot of volcanoes Much amount of recharge is expected from the mountains The south of Loliondo Much rainfall in Usagaran metamorphic rock area The west of Shinyanga town, The place which has many fault or around Maswa town, north of lineament and inselberg in granitic Tinde village, south of Igunga rock area district, west of Singida rural district, northwest of Dodoma town, around Loliondo town. Good 8 - 15 Uyui and Sikonge district Karatu district Much amount of recharge is expected from Ngorongoro mountain Around Loliondo Much rainfall in Usagaran metamorphic rock area Kishapu district, Igunga district, Most of granitic rock area the north of Iramba district Around Kiteto town, Mbulu Hilly area of Usagaran metamorphic Fair A 5 - 10 district rock Around Lake Manyara, Lake Manyara sediment has groundwater recharge from surounding mountain. Between Maswa and Kishapu Plateau of granitic area has low districs recharge of groundwater Bahi lowland area Clayey sand Fair B 3 - 7 southern part of Monduli district Usagaran metamorphic rock (Xs-a) and the northeast of Babati district Eastern part of Meatu district Fresh granitic rock is distributed Lowland surrounding Manonga Clayey sediment Fair C 2 – 4 river, Lake kitangiri, Lake Eyasi, and Wembere swamp Masai Steppe Less rainfall Shinyanga Rural district Less recharge of groundwater Poor 1 – 3 Oldubai to Lake Natron Less recharge of groundwater West of Longido Volcanic ash West of Uyui district, east of Less fracture of granitic rock Meatu town Very Poor 0.5 – 1.5 Lowland surrounding High evaporation Kitumbeine mountain 4-35 The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Main Report- Chapter 4 Hydrogeology 4.5.2 Hydrogeological Mapping Adding the geological distribution, water quality and water level to the productivity distribution, Hydrogeological Map was completed. The hydrogeological map is shown in Figure 4-23. Mbuga clay areas which become marsh in rainy season are shown in the map by grey in colour. It is difficult to construct a water supply facility in this area. Steep slope areas, which are cliff of fault and top of mountain area, are shown as impossible area for development of groundwater. Groundwater potential by district is roughly evaluated based on the hydrogeological map. Score of the evaluation is divided into three. The criteria are shown in Table 4-15. The result is shown in Table 4-16. According to this result, Karatu district and Babati district have high potential for groundwater development. Detailed potential evaluation is discussed in chapter 5. Table 4-15 Criteria of the Evaluation of Groundwater Potential Score Good Fair Poor Item ( Ο ) ( ∆ ) ( Χ ) Drilling depth Less than 80 m 80 - 150 m Over 150 m Static Water Less than 20 m 20 - 40 m Over 40 m Level Productivity Over 10 m3/h 2 - 10 m3/h Less than 2 m3/h Salinity Less than 100 mS/m 100 - 300 mS/m over 300 mS/m Fluoride Less than 1.5 mg/l 1.5 - 4.0 mg/l Over 4.0 mg/l 4-36 The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Main Report- Chapter 4 Hydrogeology Table 4-16 Outline of Groundwater Development Potential by District Drilling Produc- Region District SWL Salinity Fluoride Remarks depth tivity Northern part: relativeru good Monduli Χ Χ Χ ∆ ∆ Southern part Poor Arumeru Χ Χ Ο ∆ Χ High fluoride contents Arusha Nothern highland and Southern part are Ngorongoro ∆ Ο ∆ ∆ ∆ good Eastern and western lowlands are poor Karatu Ο Ο Ο Ο Ο Highland is good, Magugu area has Babati Ο Ο Ο Ο Ο saline groundwater Mbulu Ο ∆ ∆ Ο Ο Around Mt. Hanang: high fluoride, Manyara Hanang Χ Χ ∆ ∆ Χ Basotu lowland has saline water Ndedo, Makame lowland has saline Kiteto Χ Χ Χ Χ ∆ groundwater Simanjiro Χ ∆ Χ Χ ∆ Dodoma Χ ∆ Ο ∆ Ο Bahi lowland has saliine groundwater Dodoma Kondoa Χ ∆ Ο Ο Ο Singida ∆ Ο ∆ ∆ Χ High productivity area along faults Singida Manyoni ∆ ∆ ∆ Ο Ο Iramba ∆ Ο ∆ ∆ Χ Locally high salinity groundwater Locally high Fluoride contents, West Shinynga Ο Ο ∆ Χ Χ sided of Shinyanga town has high productivity Around Maswa town has high Shinaynga Maswa Ο Ο ∆ Χ Χ productivity Meatu Ο Ο ∆ Χ Χ High fluoride and salinity area Kishapu Ο Ο ∆ Χ Χ High fluoride and salinity area Locally high fluoride contents, Lowland Igunga Ο ∆ ∆ ∆ ∆ area has saline groundwater Nzega Ο Ο ∆ ∆ Ο Tabora Locally high saline groundwater and Uyui Ο ∆ ∆ Ο Ο high fluoride contents near Wembere swamp Sikonge Ο ∆ ∆ Ο Ο 4-37 Longitude (degree) 32 33 34 35 36 37 -2 20 -2 40 4 Reso on the Groundwater The Study 0 6 0 10 5 0 0 1 0 0 6 3 0 4 120 5 0 1 50 Legend 50 Productivity 50 0 -3 2 -3 0 5 Excellent (over 20 m3/h) 1 20 4 0 0 2 0 0 5 0 30 2 2 Very good (10 - 20 m3/h) 0 1 00 0 0 6 0 40 3 0 Good (8 - 15 m3/h) 0 0 0 5 1 8 0 2 0 Fair A (5 - 10 m3/h) 2 40 0 0 0 5 60 3 1 0 20 Fair B (3 - 7 m3/h) 4 30 0 0 4 0 2 5 150 0 0 1 1 2 50 2 40 0 50 1 Fair C (2 - 4 m3/h) 50 30 60 0 1 0 5 urces Development and Management Developmentand Management urces 4 150 0 0 0 0 8 6 5 40 2 Poor (1 - 3 m3/h) 2 0 150 0 20 0 0 3 -4 50 -4 Very Poor (0.5 - 1.5 m3/h) 0 0 2 2 5 0 2 20 0 4 0 2 0 1 1 50 0 5 0 5 0 1 Undevelopable 5 1 5 1 0 0 1 2 2 0 50 5 0 5 2 4-38 0 0 20 Lake, Swamp 0 0 20 4 5 3 50 1 0 2 0 0 0 2 0 6 3 20 0 0 0 0 0 2 5 2 3 50 150 3 0 Geological Unit 1 0 1 50 0 0 0 5 0 0 4 0 6 20 4 80 1 4 5 0 0 0 6 0 2 0 1 Cenozoic Sediment 0 0 2 3 5 4 0 0 50 0 0 0 0 5 4 5 2 1 5 5 0 0 0 150 4 0 50 Volcanic Rock 5 50 20 0 Latitude (degree)Latitude
Recommended publications
  • 9.5 Productivity Analysis and Hydrogeological Map 9.5.1
    The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Supporting Report- Chapter 9 Hydrogeology 9.5 Productivity Analysis and Hydrogeological Map 9.5.1 Productivity Analysis Productivity distribution of groundwater was presumed by the geological condition, yield of existing wells, rainfall, topographic feature and the result of satellite image analysis (1) Yield of existing wells The yield value in the borehole catalogue was referred by its distribution map. In this regard, analysis method of pumping test was doubtable mentioning in the borehole catalogue. For example, although the yield value was very high, if the drawdown was much deeper than water struck, it could be considered that the test was conducted to exceed the possibility of aquifer. The yield distribution map is shown in Figure 9-9. Although the data distribution is uneven and the data are including some error, the distribution map can show the feature of productivity in whole IDB area relatively. 32 33 34/RQJLWXGH GHJUHH 35 36 37 -2 .! µ -2 -3 -3 .! .! .! .! .! .! -4 -4 .! /" Legend .! .! /" Region Capital .! .! District Capital Borehole Location /" MajorFaults /DWLWXGH GHJUHH .! -5 Lake -5 SubBasins Yield (m3/h) .! - 1 1.0 - 2.0 2.0 - 3.0 .! 3.0 - 4.0 4.0 - 5.0 -6 -6 5.0 - 6.5 6.5 - 8.0 8.0 - 10.0 10.0 - 15.0 015 30 60 90 120 15.0 - 20.0 Kilometers 20.0 - 32 33 34 35 36 37 Figure 9-9 Well Yield Distribution of Existing Wells 9-24 The Study on the Groundwater Resources Development and Management in the Internal Drainage Basin -Supporting Report- Chapter 9 Hydrogeology (2) Rainfall Average annual rainfall for 30 years up to 1970th was referred.
    [Show full text]
  • Socioeconomic Facet of Fisheries Management in Hombolo Dam, Dodoma - Tanzania
    Tanzania Journal of Forestry and Nature Conservation, Vol 90, No. 1 (2021) 67-81 SOCIOECONOMIC FACET OF FISHERIES MANAGEMENT IN HOMBOLO DAM, DODOMA - TANZANIA Gayo, Leopody Department of Biology, University of Dodoma Email: [email protected] ABSTRACT INTRODUCTION Assessment of fisheries activities in Sustainable practices have been a global socioeconomic context is paramount if to questionable topic in the natural resources guarantee adaptive co-management of the management. Water bodies like other resources. The study investigated the status environmental components are potential of fishing activities and documented the resources suffering devastating drivers threatening fish stock in the environmental pressure beyond their Hombolo Man-made Dam between January resilience capacity (Mulimbwa 2006; and October 2019. Semi-structured Carpenter and Kleinjans 2016). Scientific interviews, Focus group discussion, Key advice on the observance of fish limits to informants interviews, direct field ensure adherence on the Total Allowable observations and documentary review were Catch (TAC) for commercial fish stock has employed to collect data. Content analysis, not been respected (Mkama et al., 2010; Statistical Package for Social Sciences Glaser et al. 2018). Overfishing in the version 20 and ERDAS software were used Atlantic regions has been documented to be to analyze data. Results show the decline in attributed by the disregarding of TAC amount of fish harvested (AFH) by 72.5% at among Fisheries Ministers; For instance, in β ± SE: -0.99 ± 0.14, t=-3.05, p = 0.003 2016, Ireland, Spain, and Sweden allowed between 2011 and 2019. Similarly, number fishing at 26%, 24%, and 23%, respectively, of fishermen and fishing boats decreased by the percentage observed to be beyond their 67% at -0.36 ± 0.71, t=-0.24, p = 0.016 and TAC as per scientific advice (Carpenter 53% at -0.58 ± 0.21, t=-1.33, p = 0.006 2018).
    [Show full text]
  • African Water Resource Database. GIS-Based Tools for Inland Aquatic Resource Management
    The mention or omission of specific companies, their products or brand names does not imply any endorsement or judgement by the Food and Agriculture Oganization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 978-92-5-105631-8 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch. Communication Division FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to [email protected] © FAO 2007 iii Preparation of this document This study is an update of an earlier project led by the Aquatic Resource Management for Local Community Development Programme (ALCOM) entitled the “Southern African Development Community Water Resource Database” (SADC-WRD). Compared with the earlier study, made for SADC, this one is considerably more refined and sophisticated. Perhaps the most significant advances are the vast amount of spatial data and the provision of simplified and advanced custom-made data management and analytical tool-sets that have been integrated within a single geographic information system (GIS) interface.
    [Show full text]
  • 11873395 01.Pdf
    Exchange rate on Jan. 2008 is US$ 1.00 = Tanzanian Shilling Tsh 1,108.83 = Japanese Yen ¥ 114.21 TABLE OF CONTENTS SUPPORTING REPORT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES ABBREVIATIONS CHAPTER 1 METEOROLOGY AND HYDROLOGY.......................................................... 1 - 1 1.1 Purpose of Survey ............................................................................................................... 1 - 1 1.2 Meteorology ........................................................................................................................ 1 - 1 1.2.1 Meteorological Network.................................................................................. 1 - 1 1.2.2 Meteorological Data Analysis ......................................................................... 1 - 2 1.3 Hydrology ........................................................................................................................... 1 - 7 1.3.1 River Network ................................................................................................. 1 - 7 1.3.2 River Regime................................................................................................... 1 - 8 1.3.3 River Flow Discharge Measurement ............................................................... 1 - 10 1.4 Water Use........................................................................................................................... 1 - 12 CHAPTER 2 GEOMORPHOLOGY........................................................................................
    [Show full text]
  • Northern Zone Regions Investment Opportunities
    THE UNITED REPUBLIC OF TANZANIA PRIME MINISTER’S OFFICE REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT Arusha “The centre for Tourism & Cultural heritage” NORTHERN ZONE REGIONS INVESTMENT OPPORTUNITIES Kilimanjaro “Home of the snow capped mountain” Manyara “Home of Tanzanite” Tanga “The land of Sisal” NORTHERN ZONE DISTRICTS MAP | P a g e i ACRONYMY AWF African Wildlife Foundation CBOs Community Based Organizations CCM Chama cha Mapinduzi DC District Council EPZ Export Processing Zone EPZA Export Processing Zone Authority GDP Gross Domestic Product IT Information Technology KTC Korogwe Town Council KUC Kilimanjaro Uchumi Company MKUKUTA Mkakati wa Kukuza Uchumi na Kupunguza Umaskini Tanzania NDC National Development Corporation NGOs Non Government Organizations NSGPR National Strategy for Growth and Poverty Reduction NSSF National Social Security Fund PANGADECO Pangani Development Corporation PPP Public Private Partnership TaCRI Tanzania Coffee Research Institute TAFIRI Tanzania Fisheries Research Institute TANROADS Tanzania National Roads Agency TAWIRI Tanzania Wildlife Research Institute WWf World Wildlife Fund | P a g e ii TABLE OF CONTENTS ACRONYMY ............................................................................................................ii TABLE OF CONTENTS ........................................................................................... iii 1.0 INTRODUCTION ..............................................................................................1 1.1 Food and cash crops............................................................................................1
    [Show full text]
  • Modelling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania
    Department of Physical Geography and Quaternary Geology Modelling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania Marc Girons Lopez Master’s thesis NKA 45 Physical Geography and Quaternary Geology, 30 HECs 2011 Preface This Master’s thesis is Marc Girons Lopez’s degree project in Physical Geography and Quaternary Geology, at the Department of Physical Geography and Quaternary Geology, Stockholm University. The Master’s thesis comprises 30 HECs (one term of full-time studies). Supervisors have been Jerker Jarsjö and Maria Malmström Ryner, at the Department of Physical Geography and Quaternary Geology, Stockholm University. Examiner has been Steve Lyon, at the Department of Physical Geography and Quaternary Geology, Stockholm University. The author is responsible for the contents of this thesis. Stockholm, 21 June 2011 Clas Hättestrand Director of studies Modeling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania Abstract A good understanding of the local and regional water cycle and how it is modified by landscape changes may help policymakers take the pertinent decisions in order to avoid adverse effects of future hydro–climatic changes. This knowledge is of particular interest in the most vulnerable areas of the world such as the African continent. In this context the aim of this project is to model hydrological responses to possible changes in climatic conditions in Lake Babati, northern Tanzania. For this reason a water balance model specially designed to simulate lake level changes was adapted to Lake Babati and calibrated with the available local meteorological and hydrological data record covering the last decades. The necessary ambient condition changes to produce a dry–out and an overflow of the lake were investigated and the response of the system to future IPCC climate change projections was studied.
    [Show full text]
  • Appendix: Lakes of the East African Rift System
    Appendix: Lakes of the East African Rift System Alkalinity Country Lake Latitude Longitude Type Salinity [‰]pH [meq LÀ1] Djibouti Assal 11.658961 42.406998 Hypersaline 158–277a,d NA NA Ethiopia Abaja/Abaya 6.311204 37.847671 Fresh-subsaline <0.1–0.9j,t 8.65–9.01j,t 8.8–9.4j,t Ethiopia A¯ bay Ha¯yk’ 7.940916 38.357706 NA NA NA NA Ethiopia Abbe/Abhe Bad 11.187832 41.784325 Hypersaline 160a 8f NA Ethiopia Abijata/Abiyata 7.612998 38.597603 Hypo-mesosaline 4.41–43.84f,j,t 9.3–10.0f,t 102.3–33.0f,j Ethiopia Afambo 11.416091 41.682701 NA NA NA NA Ethiopia Afrera (Giulietti)/ 13.255318 40.899925 Hypersaline 169.49g 6.55g NA Afdera Ethiopia Ara Shatan 8.044060 38.351119 NA NA NA NA Ethiopia Arenguade/Arenguadi 8.695324 38.976388 Sub-hyposaline 1.58–5.81r,t 9.75–10.30r,t 34.8–46.0t Ethiopia Awassa/Awasa 7.049786 38.437614 Fresh-subsaline <0.1–0.8f,j,t 8.70–8.92f,t 3.8–8.4f,t Ethiopia Basaka/Beseka/ 8.876931 39.869957 Sub-hyposaline 0.89–5.3c,j,t 9.40–9.45j,t 27.5–46.5j,t Metahara Ethiopia Bischoftu/Bishoftu 8.741815 38.982053 Fresh-subsaline <0.1–0.6t 9.49–9.53t 14.6t Ethiopia Budamada 7.096464 38.090773 NA NA NA NA Ethiopia Caddabassa 10.208165 40.477524 NA NA NA NA Ethiopia Chamo 5.840081 37.560654 Fresh-subsaline <0.1–1.0j,t 8.90–9.20j,t 12.0–13.2j,t Ethiopia Chelekleka 8.769979 38.972268 NA NA NA NA Ethiopia Chitu/Chiltu/Chittu 7.404516 38.420191 Meso-hypersaline 19.01–64.16 10.10–10.50 22.6–715.0f,t f,j,t f,j,t Ethiopia Gemeri/Gummare/ 11.532507 41.664848 Fresh-subsaline <0.10–0.70a,f 8f NA Gamari Ethiopia Guda/Babogaya/ 8.787114 38.993297
    [Show full text]
  • The Origin and Future of an Endangered Crater Lake
    1 The origin and future of an endangered crater lake endemic; 2 phylogeography and ecology of Oreochromis hunteri and its invasive 3 relatives 4 Florian N. Moser1,2, Jacco C. van Rijssel1,2,3, Benjamin Ngatunga4, Salome Mwaiko1,2, Ole 5 Seehausen1,2 6 7 1Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland 8 2Department of Fish Ecology & Evolution, EAWAG, Centre for Ecology, Evolution and Biogeochemistry, 6047 9 Kastanienbaum, Switzerland 10 3Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands 11 4Tanzania Fisheries Research Institute, Box 9750, Dar es Salaam, Tanzania 12 13 Abstract 14 Cichlids of the genus Oreochromis (“Tilapias”) are intensively used in aquaculture around the 15 world. In many cases when “Tilapia” were introduced for economic reasons to catchments 16 that were home to other, often endemic, Oreochromis species, the loss of native species 17 followed. Oreochromis hunteri is an endemic species of Crater Lake Chala on the slopes of 18 Mount Kilimanjaro, and is part of a small species flock in the upper Pangani drainage system 19 of Tanzania. We identified three native and three invasive Oreochromis species in the region. 20 Reconstructing their phylogeography we found that O. hunteri is closely related to, but distinct 21 from the other members of the upper Pangani flock. However, we found a second, genetically 22 and phenotypically distinct Oreochromis species in Lake Chala whose origin we cannot fully | downloaded: 4.10.2021 23 resolve. Our ecological and ecomorphological investigations revealed that the endemic O. 24 hunteri is currently rare in the lake, outnumbered by each of three invasive cichlid species.
    [Show full text]
  • ARUSHA REGION Y7/I2gq
    / /r"/// / - 7 ARUSHA REGION y7/i2gQ INTEGRATED DEVELOPMENT PLAN SUMMARY REPORT Prepared By THE REGIONAL DEVELOPMENT DIRECTORATE ARUSHA REGION With The Assistance Of THE ARUSHA PLANNING AND VILLAGE DEVELOPMENT PROJECT Regional Commissioner's Office Arusha Region P.O. Box 3050 ARUSHA September 1981 THE UNITED REPUBLIC OF TANZANIA OFFICE OF THE PRIME MINISTER Regional Development Directorate, Arusha Telegrams: "REGCCM" REGIONAL CCMISSIONER'S OFFICE, P.O. Box 3050, Telephone: 2270-4 ARU SHA 18th December, 1982 During the four year period beginning in July 1979 Arusha Region has been assisted by the USAID.-psnsored Arusha Planning and Village Devalopuent Po"jd in the implementation of a large number of village development activities and in the preparation of the Region's Integrated Development Plan. It is a great pleasure to me that this Plan has now been completed and that I am able to write this short forward. The Arusha Region Integrated Development Plan includes a comprehensive description of the current status of development in the Region, an analysis of constraints to future development, and the strategies and priorities that the Region has adopted for guiding its future development. It also includes a review of projects in the Region's Five Year Development Plan as well as priority projects for long term investments. The preparation of the Plan has involved many meetings at the Regional, District and village level, and the goals, strategies, objectives and priority projects included in the Plan fully represent the decisions of the officials involved in those meetings. I am confident that the Plan will provide a very useful frame of reference for guiding the economic and social development of Arusha Region over both the medium-term five year period and the next 20 years.
    [Show full text]
  • Tanzania Cultural Tourism
    Tanzania Cultural Tourism Issue No. 6 Authentic Cultural Experiences Unforgettable Tanzania We are in: Sponsored by: Tanzania Tourist Board @ttbtanzania @TtbTanzania Tanzania Tourist Board For enquiries: Utalii House - Laibon street/Ali Hassan Mwinyi Road Cultural Tourism Programme Opposite French Embassy Boma Road, P.O.Box 2348, Arusha, Tanzania P.O.Box 2485, Dar es Salaam, Tel: +255 27 2050025, Fax: +255 27 2507515, Mobile: +255 786 703 010 Tanzania. E-mail: [email protected] / [email protected] Email: [email protected] Website: www.tanzaniaculturaltourism.com Email: [email protected] or Web: www.tanzaniatourism.go.tz Tanzania Tourist Board General +255 2664878 Boma Road, P.O.Box 2348, Arusha, Tanzania Tel: +255 27 2503842-3 E-mail: [email protected] CULTURAL TOURISM PROGRAMME We are in: culturaltourismtanzania @CULTURALTOURISMTANZANIA @culturaltourismtz tanzaniaculturaltourismprogramme Whilst every care has been taken to ensure all information is accurate and up-to-date, responsibility cannot be taken for any errors or omissions. © 2016 (All photos courtesy: Cultural Tourism Programme, Tanzania Tourist Board) FOREWORD Welcome, To Tanzania, The Soul of Africa! Tanzania is one of Africa’s Top Destinations, home to Africa’s highest peak, Mt.Kilimanjaro; Serengeti, where the world’s most spectacular annual wildlife migration takes place; Selous, Africa’s largest Game Reserve; the mystical and enchanting spice islands of Zanzibar; blended with a unique and divers culture and rich history to mention a few .All these give the traveler incredible experiences and unforgettable memories of Tanzania. Besides all these attractions, it goes without saying that another attraction which stands equally tall is the Tanzanian people –considered as one of the most friendly and hospitable people on the African continent.
    [Show full text]
  • Manyara Region Investment Guide
    THE UNITED REPUBLIC OF TANZANIA PRESIDENT’S OFFICE REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT MANYARA REGION INVESTMENT GUIDE The preparation of this guide was supported by the United Nations Development Programme (UNDP) and Economic and Social Research Foundation (ESRF) 182 Mzinga way/Msasani Road Oyesterbay P.O. Box 9182, Dar es Salaam Tel: (+255-22) 2195000 - 4 ISBN: 978 - 9976 - 5231 - 9 - 5 E-mail: [email protected] Email: [email protected] Website: www.esrftz.or.tz Website: www.tz.undp.org MANYARA REGION INVESTMENT GUIDE | i TABLE OF CONTENTS ABBREVIATIONS .....................................................................................................................................v LIST OF TABLES ................................................................................................................................... viii FOREWORD ..............................................................................................................................................x EXECUTIVE SUMMARY ....................................................................................................................xii DISCLAIMER .......................................................................................................................................... xv PART ONE: ...............................................................................................1 REASONS FOR INVESTING IN MANYARA REGION .......................................... 1 1.1 Investment Climate and Trade Policy ........................................................................1
    [Show full text]
  • The Impact of Population Increase Aroud Lake Babati
    THE IMPACT OF POPULATION INCREASE AROUD LAKE BABATI HONGOA, PIUS SIMON THE DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN ENVIRONMENTAL STUDIES OF THE OPEN UNIVERSITY OF TANZANIA 2014 ii CERTIFICATION I have critically read the dissertation report and satisfied that it is in acceptable standard for a higher degree award. ------------------------------------------------- Dr. Makundi A.E. (PhD) (Supervisor) Date: -------------------------- iii COPYRIGHT No part of this dissertation may be produced, stored in any retrieval system, or transmitted in any form or by any means without the prior written permission of the author or Open University of Tanzania on that behalf. iv DECLARATION I, Hongoa Pius Simon, do hereby declare that this dissertation is my original work under the supervision and guidance of Dr. Makundi A.E and has not been submitted for a degree award at any other university. ……………………………. Hongoa, Pius Simon v DEDICATION To my beloved mother (the late) Doradine Emanuel Hongoa and My beloved father Col (Rtd) Simon Lali Hongoa, who laid down the foundation of my education and their tireless support. vi ACKNOWLEDGEMENT I extend my sincere gratitude to God for the blessings and good health. This dissertation would never have been in this shape, without the countless hours of discussion and unwavering commitment of my supervisor Dr. Makundi A.E of the Department of Life Science of Open University of Tanzania. His contribution and guidance throughout the study enriched and created the foundation of this dissertation, the support, assistance and professional inputs provided before and during the writing of this dissertation remain a permanent asset for reporting other scientific works in future.
    [Show full text]