FCC FACT SHEET* Mitigation of Orbital Debris in the New Space Age Report and Order and Further Notice of Proposed Rulemaking, IB Docket No

Total Page:16

File Type:pdf, Size:1020Kb

FCC FACT SHEET* Mitigation of Orbital Debris in the New Space Age Report and Order and Further Notice of Proposed Rulemaking, IB Docket No April 2, 2020 FCC FACT SHEET* Mitigation of Orbital Debris in the New Space Age Report and Order and Further Notice of Proposed Rulemaking, IB Docket No. 18-313 Background: Since 2004, when the Commission first adopted rules regarding orbital debris mitigation for Commission-authorized satellites, there have been a number of developments in technologies and business models that pose new or additional orbital debris risks. These developments include the increasing deployment of lower-cost small satellites and of large constellations of non-geostationary satellite orbit systems, some potentially involving thousands of satellites. This revision of our orbital debris mitigation rules would address these recent developments and incorporate technical guidance from the broad U.S. Government interagency community that developed the recent update to the U.S. Government Orbital Debris Mitigation Standard Practices. What the Report and Order Would Do: • Revise existing application disclosure rules to incorporate numeric thresholds, including for: o risk of collision with large objects o risk of collision with small objects that would disable the satellite o probability of successful post-mission disposal casualty risk associated with those satellites that will re-enter Earth’s atmosphere o • Adopt a requirement that all satellites must be equipped with maneuverability sufficient to perform collision avoidance maneuvers during any period when the satellite is in an orbit that is above the International Space Station (approximately 400 kilometers altitude). • Update disclosure requirements and adopt new disclosure requirements related to limiting collision risk, protecting inhabitable spacecraft, maneuverability, use of deployment devices, release of persistent liquids, and proximity operations. • Adopt disclosure requirements regarding satellite trackability, satellite identification, and how operators plan to share information related to space situational awareness, such as ephemeris data. • Codify informational requirements for geostationary-orbit satellite license extensions and limit the duration of such extensions to five years maximum per extension. • Clarify existing high-level Commission requirements regarding maintaining control of authorized stations, including for satellite command communications. • Clarify liability issues by adopting a requirement that licensees indemnify the United States for costs associated with any claims brought against the United States under international outer space treaties. • Clarify that the revised rules, with some exceptions, apply to applicants under parts 5, 25, and 97 of the Commission’s rules, including applicants for U.S. market access under part 25. What the Further Notice Would Do: • Propose a bond requirement for geostationary and non-geostationary orbit space stations associated with successful post-mission disposal. * This document is being released as part of a "permit-but-disclose" proceeding. Any presentations or views on the subject expressed to the Commission or its staff, including by email, must be filed in IB Docket No. 18-313, which may be accessed via the Electronic Comment Filing System (https://www.fcc.gov/ecfs/). Before filing, participants should familiarize themselves with the Commission’s ex parte rules, including the general prohibition on presentations (written and oral) on matters listed on the Sunshine Agenda, which is typically released a week prior to the Commission’s meeting. See 47 CFR § 1.1200 et seq. Federal Communications Commission FCC-CIRC2004-03 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Mitigation of Orbital Debris in the New Space Age ) IB Docket No. 18-313 ) REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING* Adopted: [] Released: [] By the Commission: Comment Date: [] Reply Comment Date: [] TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 3 III. DISCUSSION ...................................................................................................................................... 14 A. Regulatory Approach to Mitigation of Orbital Debris ................................................................... 15 1. FCC Statutory Authority Regarding Orbital Debris ................................................................ 15 2. Relationship with Other U.S. Government Activities ............................................................. 20 3. Economic Considerations ........................................................................................................ 25 4. Other Introductory Matters ...................................................................................................... 28 B. Safe Flight Profiles ........................................................................................................................ 32 1. Collisions with Large Objects ................................................................................................. 33 2. Collisions with Small Objects ................................................................................................. 43 3. Disclosures Regarding Planned Orbit(s) ................................................................................. 46 4. Orbit Variance and Orbit Selection for Large NGSO Systems ............................................... 51 5. Protection of Inhabitable Spacecraft ....................................................................................... 54 6. Maneuverability....................................................................................................................... 56 C. Tracking and Data Sharing ............................................................................................................ 64 1. Trackability and Satellite Identification .................................................................................. 67 * This document has been circulated for tentative consideration by the Commission at its April 2020 open meeting. The issues referenced in this document and the Commission’s ultimate resolution of those issues remain under consideration and subject to change. This document does not constitute any official action by the Commission. However, the Chairman has determined that, in the interest of promoting the public’s ability to understand the nature and scope of issues under consideration, the public interest would be served by making this document publicly available. The FCC’s ex parte rules apply and presentations are subject to “permit-but-disclose” ex parte rules. See, e.g., 47 C.F.R. §§ 1.1206, 1.1200(a). Participants in this proceeding should familiarize themselves with the Commission’s ex parte rules, including the general prohibition on presentations (written and oral) on matters listed on the Sunshine Agenda, which is typically released a week prior to the Commission’s meeting. See 47 CFR §§ 1.1200(a), 1.1203. Federal Communications Commission FCC-CIRC2004-03 2. Ongoing Space Situational Awareness .................................................................................... 77 D. Topics Related to Creation of Debris During Operations .............................................................. 86 1. Deployment Devices ............................................................................................................... 87 2. Minimizing Debris Generated by Release of Persistent Liquids ............................................. 93 E. Post-Mission Disposal ................................................................................................................... 96 1. Post-Mission Orbital Lifetime ................................................................................................. 98 2. Reliability and Post-Mission Disposal .................................................................................. 103 a. Deployment Orbit ........................................................................................................... 111 b. Automatic Initiation of Disposal ..................................................................................... 115 c. Direct Spacecraft Retrieval ............................................................................................. 117 3. MEO Disposal ....................................................................................................................... 119 F. GSO License Extensions and Related Issues ............................................................................... 121 G. Casualty Risk Assessment ........................................................................................................... 128 H. Proximity Operations ................................................................................................................... 133 I. Encryption and Security of Spacecraft Command ....................................................................... 135 J. Frequency Coordination for Orbit-Raising .................................................................................. 139 K. Liability Issues and Economic Incentives .................................................................................... 146 1. Indemnification ....................................................................................................................
Recommended publications
  • Driving Innovation in the ATS Market (2018 Small Payload Rideshare Symposium) Bob Caffrey NASA/GSFC [email protected] June, 13, 2018
    https://ntrs.nasa.gov/search.jsp?R=20180004166 2019-08-31T16:05:42+00:00Z Driving Innovation in the ATS Market (2018 Small Payload Rideshare Symposium) Bob Caffrey NASA/GSFC [email protected] June, 13, 2018 Commercial HP (SES/GOLD) Rideshare Poster‐child: DSCOVR & TESS DSCOVR: Feb 2015 TESS: April 2018 2500 kg of unused mass went to L-1 ~3000 kg excess on a TLI orbit 6/12/2018 2 Government Rideshare: Past, Present & Future 6/12/2018 Past Missions (DSCOVR) Future Multi‐missions (STP‐2) 3 NASA Mission Opportunities: (http://soma.larc.nasa.gov/standardao/pdf_files/SMDSolicitationPlanningList.pdf) Planned AO Required NASA Science Opportunity AO Release Date Launch Window Heliophysics STP‐5 AO & MOO NET Q3 FY 2017 AO + ~6.5 years Heliophysics MIDEX AO/MOO NET Q1 FY 2018 AO + ~6.5 years EVI‐5 AO (every 18 months) NET Q2 FY 2018 AO + ~6.5 years LWS (GDC) AO & MOO Q4 FY 2018 AO + ~6.5 years Astrophysics Explorers MOO NET Q4 FY 2018 AO + ~6.5 years Astrophysics SMEX NET Q2 FY 2019 AO + ~6.5 years EVM‐3 AO TBD AO + ~6.5 years 6/12/2018 4 Access to Space (ATS) Options Access to Space (ATS) Decision Tree NASA Rideshare Opportunities: Cost: Risk: Rideshare? Benefits: D4 USAF/DoD RS Opportunities: Cost: Risk: Benefits: Rideshare or Hosted P/L? Commercial RS Opportunities: Cost: Risk: D2 Benefits: NASA HP Opportunities: Cost: No Risk: Hosted P/L? Benefits: Dedicated Launch? D5 USAF/DoD HP Opportunities: Cost: Risk: Access Benefits: To Space D1 Commercial HP Opportunities: Cost: Yes Risk: Benefits: Small, Medium, Or Large L/V? Small L/V (< 5,000
    [Show full text]
  • FCC-20-54A1.Pdf
    Federal Communications Commission FCC 20-54 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Mitigation of Orbital Debris in the New Space Age ) IB Docket No. 18-313 ) REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING Adopted: April 23, 2020 Released: April 24, 2020 By the Commission: Chairman Pai and Commissioners O’Rielly, Carr, and Starks issuing separate statements; Commissioner Rosenworcel concurring and issuing a statement. Comment Date: (45 days after date of publication in the Federal Register). Reply Comment Date: (75 days after date of publication in the Federal Register). TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 3 III. DISCUSSION ...................................................................................................................................... 14 A. Regulatory Approach to Mitigation of Orbital Debris ................................................................... 15 1. FCC Statutory Authority Regarding Orbital Debris ................................................................ 15 2. Relationship with Other U.S. Government Activities ............................................................. 20 3. Economic Considerations .......................................................................................................
    [Show full text]
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris
    To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution.
    [Show full text]
  • Realizing Resilient Tactical Networks with Maximum Government Control on High-Throughput Satellites
    WHITE PAPER Realizing Resilient Tactical Networks with Maximum Government Control on High-throughput Satellites 1 Wide-beam connectivity is an essential aspect of military satellite communications and High Throughput Satellite (HTS) technology is proving to be ideally suited for many Government applications. While most satellite operators offer closed HTS architectures that are vendor-locked with very little control offered to users, the Intelsat Epic Next Generation (Epic) HTS architecture is enterprise- grade, open architecture and vendor-agnostic. Intelsat Epic allows Government and military access to bandwidth-efficient, higher data throughputs on a global-scale via a wide variety of user-chosen waveforms, modems and antennas. Intelsat is proud to present the next generation of satellite communications that features higher data throughput rates and security while offering cost-efficiencies across the board. Introduction High Throughput Satellites (HTS) have been the center of solutions. Interoperability between the various military attention for the past five years. It is important to note that branches, allied, and coalition forces continues to be a most of these systems have been purpose-built solutions to challenge. Finally, most military and government users require service homogeneous sets of users via closed architectures. operational coverage in remote and austere regions such Systems such as ViaSat Exede, Inmarsat Global Express, Hughes as deserts, jungles, and oceans—well outside of population Jupiter, and Eutelsat KA-SAT require new investments in centers for which these closed architectures are optimized. proprietary modem technologies and service architectures. These closed systems offer star-only connectivity and keep With the disconnects between these closed HTS solutions and quality of service control with the service provider, not the end the challenges faced by the Government, it is no wonder that users.
    [Show full text]
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • Spaceflight, Inc. General Payload Users Guide
    Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Spaceflight, Inc. General Payload Users Guide 3415 S. 116th St, Suite 123 Tukwila, WA 98168 866.204.1707 spaceflightindustries.com i Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Document Revision History Rev Approval Changes ECN No. Sections / Approved Pages CM Date A 2011‐09‐16 Initial Release Updated electrical interfaces and launch B 2012‐03‐30 environments C 2012‐07‐18 Official release Updated electrical interfaces and launch D 2013‐03‐05 environments, reformatted, and added to sections Updated organization and formatting, E 2014‐04‐15 added content on SHERPA, Mini‐SHERPA and ISS launches, updated RPA CG F 2015‐05‐22 Overall update ii Spaceflight, Inc. SF‐2100‐PUG‐00001 Rev F 2015‐22‐15 Payload Users Guide Table of Contents 1 Introduction ........................................................................................................................... 7 1.1 Document Overview ........................................................................................................................ 7 1.2 Spaceflight Overview ....................................................................................................................... 7 1.3 Hardware Overview ......................................................................................................................... 9 1.4 Mission Management Overview .................................................................................................... 10 2 Secondary
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Itu Recommendation Itu-R S.1003.2
    SPACE DEBRIS MITIGATION STANDARDS ITU RECOMMENDATION ITU‐R S.1003.2 International mechanism: International Telecommunications Union (ITU) Recommendation ITU‐R S.1003.2 (12/2010) Environmental protection of the geostationary‐satellite orbit Description: ITU‐R S.1003.2 provides guidance about disposal orbits for satellites in the geostationary‐ satellite orbit (GSO). In this orbit, there is an increase in debris due to fragments resulting from increased numbers of satellites and their associated launches. Given the current limitations (primarily specific impulse) of space propulsion systems, it is impractical to retrieve objects from GSO altitudes or to return them to Earth at the end of their operational life. A protected region must therefore be established above, below and around the GSO which defines the nominal orbital regime within which operational satellites will reside and manoeuvre. To avoid an accumulation of non‐functional objects in this region, and the associated increase in population density and potential collision risk that this would lead to, satellites should be manoeuvred out of this region at the end of their operational life. In order to ensure that these objects do not present a collision hazard to satellites being injected into GSO, they should be manoeuvred to altitudes higher than the GSO region, rather than lower. The recommendations embodied in ITU‐R S.1003.2 are: – Recommendation 1: As little debris as possible should be released into the GSO region during the placement of a satellite in orbit. – Recommendation 2: Every reasonable effort should be made to shorten the lifetime of debris in elliptical transfer orbits with the apogees at or near GSO altitude.
    [Show full text]
  • Disaster Emergency Logistic Telemedicine Advanced Satellites System (DELTASS) Telecommunication System Overview
    Disaster Emergency Logistic Telemedicine Advanced Satellites System (DELTASS) Telecommunication system overview M E D I C A L Presentation at ITU - May 23 to 25, 2003 J.-C. Durand DEE/NSA DELTASS Disaster Emergency Logistic Telemedecine Advanced Satellite System Inmarsat Mobile Field Hospital Eutelsat GPS Globalstar Mobile teams Reference Hospital Gateway Permanent Center Presentation at ITU - May 23 to 25, 2003 J.-C. Durand DEE/NSA DELTASS Components § In a “safe location”: - the Permanent Centre (PC). It is permanently operational and can be activated in case of relevant disaster. Its role is to trigger the whole system, to be the coordination centre during the deployment phase and to manage a first medical data base and a log of all communications. (Located in Toulouse during the DELTASS demonstrations) - a Reference Hospital (RH). To be chosen depending on the country and on the disaster type and location. Its role is to be a medical support to the MFH and to host a medical data base, identical to the MFH one. (Located in Berlin during the main DELTASS demonstration) § On the disaster field (near Toulouse, then near Ulm): - several Search And Rescue teams (SAR). They recover the victims, install them on a safe place, fill in a NATO medical form and send the content together with a GPS information to the coordination centre. - a First Medical Aid team (FMA). They are equipped with a medical suitcase and can bring a first medical assistance to victims, on request of the coordination centre. The collected medical data and a GPS information are sent to the coordination centre.
    [Show full text]
  • Eutelsat S.A. €300,000,000 3.125% Bonds Due 2022 Issue Price: 99.148 Per Cent
    EUTELSAT S.A. €300,000,000 3.125% BONDS DUE 2022 ISSUE PRICE: 99.148 PER CENT The €300,000,000 aggregate principal amount 3.125% per cent. bonds due 10 October 2022 (the Bonds) of Eutelsat S.A. (the Issuer) will be issued outside the Republic of France on 9 October 2012 (the Bond Issue). Each Bond will bear interest on its principal amount at a fixed rate of 3.125 percent. per annum from (and including) 9 October 2012 (the Issue Date) to (but excluding) 10 October 2022, payable in Euro annually in arrears on 10 October in each year and commencing on 10 October 2013, as further described in "Terms and Conditions of the Bonds - Interest"). Unless previously redeemed or purchased and cancelled in accordance with the terms and conditions of the Bonds, the Bonds will be redeemed at their principal amount on 10 October 2022 (the Maturity Date). The Issuer may at its option, and in certain circumstances shall, redeem all (but not part) of the Bonds at par plus any accrued and unpaid interest upon the occurrence of certain tax changes as further described in the section "Terms and Conditions of the Bonds - Redemption and Purchase - Redemption for tax reasons". The Bondholders may under certain conditions request the Issuer to redeem all or part of the Bonds following the occurrence of certain events triggering a downgrading of the Bonds as further described in the Section "Terms and Conditions of the Bonds — Redemption and Purchase - Redemption following a Change of Control". The obligations of the Issuer in respect of principal and interest payable under the Bonds constitute direct, unconditional, unsecured and unsubordinated obligations of the Issuer and shall at all times rank pari passu among themselves and pari passu with all other present or future direct, unconditional, unsecured and unsubordinated obligations of the Issuer, as further described in "Terms and Conditions of the Bonds - Status".
    [Show full text]