Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Introduction UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" INTRODUCTION The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" NATURAL CONDITIONS OF FORMATION OF ECOLOGICAL SITUATION INTHELAKEBAIKALBASIN Explanatory notes for the geological map of the Baikal watershed basin Many features inherent in the geological structure of the territory of the watershed basin are due to the fact that the territory lies at the interface between the two main lithospheric plates of East Siberia, namely the old Siberian platform, and the younger Central-Asian mobile belt. Formation of the geological structure of both Russian and Mongolian parts of the territory began in the Early Precambrian. For this reason, the geological structures, presented on the map, preserved traces of both Precambrian and Phanerozoic eras of tectogenesis. Precambrian formations have been ascertained essentially within the mountains surrounding the Baikal hollow and to the south and south-west of it, within the north-west of Mongolia. The sedimentary-metamorphic complexes of Archean age are separated into three series differing in the set of rocks composing them, the degree of metamorphism, the type of magmatic manifestations, and in the pattern of fold structures: the Sharyzhalgai, Khamar-Daban and Olkhon series. The occurrence area of rocks of the Sharyzhalgai series on the south is clearly delineated – it is a near-rectilinear shore of Lake Baikal between the source of the Angara river and the settlement of Kultuk, and on the south-west – by the zone of the Main Sayan Fault. Its composition includes rocks of two types: biotite, biotite-garnet and biotite-hypersthene migmatizated gneisses among which there occur, in the form of separate interlayers and thicker bedsets, amphibolites, pyroxene and amphibolite-pyroxene schists as well as granites differing in composition and structural-textural characteristics. The complex of sedimentary-metamorphic formations of the Khamar-Daban series is of widespread occurrence along the southern shores of Lake Baikal and within the confines of the Khamar-Daban mountain range. The composition of the series is notable for the Slyudyanka and Kharangul subseries. The Slyudyanka subseries is comprised of thick terrigenous-carbonate layers (carbonate bedsets, and specific silicious-dolomite apatite-bearing rocks), while the Kharangul subseries is dominated by flyschoid deposits (homogeneous aluminous slates, and gneisses with rarely occurring interlayers and bedsets of carbonates). Deposits of the Olkhon series occur widely in Priolkhonie and in Olkhon Island; they are represented by marbles, pyroxene-plagioclase schists, amphibole-biotite gneisses, and magmatites with interbeds of amphibolites and quartzites. The Precambrian ophiolitic complex, confined to the suture zones of the fold belt, is registered in the north-western part of Mongolia. The Lower-Proterozoic deposits of the Muya series are exposed on the watersheds of the Primorskii ridge along the coastal stripe of Maloe More and are represented by quartzites, slates and metamorphized effusive. The Upper-Proterozoic (Riphean) deposits occur mainly within the Baikal mountain region. The Patom series occurs in the north of the region and divides into the Ballaganakh, Kadalikan and Bodaibo subseries which, in turn, subdivide into formations. In Western Cisbaikalia there occurs the Baikal series of the Upper Proterozoic consisting of three formations: the Goloustnoe, Uluntui and Kachergat formations. On the south, within the Olkha−Goloustnoe plateau there occur deposits of the Ushakovka formation of the Moty series. Cambrian rocks occur widely in the Middle-Vitim and Angara-Barguzin mountain regions as well as within the Uda river basin. The composition of Cambrian deposits is quite varied, ranging from conglomerates and sandstones to very fine carbonate differences. The The intellectual property rights belong to UNOPS and UNDP, the information should not be used by a third party before consulting with the project. UNDP-GEF project "Integrated Natural Resource Management in the Baikal Basin Transboundary Ecosystem" Devonian deposits are represented by a rather broad spectrum of separate isolated areas; they are arbitrarily subdivided into two stratigraphic complexes. The lower Devonian layers are dominated by carbonate deposits, while the upper level is comprised of terrigenous and volcanogenic-terrigenous deposits. The Carboniferous deposits occur in many isolated areas. The Carboniferous is represented largely by terrigenous deposits (sandstones, aleurites, gravelites and conglomerates, and calcareous clay slates). The Permian deposits are also very much isolated. The largest field of Permian deposits is the Borzya deposit; it lies in Eastern Transbaikalia, and in Western Transbaikalia in the Khilok area. They are represented by relatively uniform terrigenous (and very rarely, carbonate) rocks of a marine and continental origin. The Triassic deposits include widely occurring volcanogenic formations that are assigned to the Dzhida-Khilok series occurring with scouring on Paleozoic granitoids and other rocks. The lower layers are comprised of the Chernoyarovo formation consisting of major effusive, tuff conglomerates and tuff sandstones. The upper layers include the Tamirskaya formation consisting of acid effusive and tuffs, and aleurites. Sedimentary and sedimentary-volcanic deposits of the Triassic occupy large areas in the western part of Mongolia, where they are interrupted in some places by the Jurassic sediments. The Lower-Jurassic formations are dominant in the eastern part of Transbaikalia. Starting largely in the Mid-Jurassic period, the western and northern parts of Transbaikalia had been accumulating layers of conglomerates, sandstones, aleurites and argillites with interbeds of bituminous coal. The upper division includes covers of acid effusives. Such effusive-sedimentary formations also extend over the Vitim upland. The syncline cores, usually with their north- eastward strike line, occur in the area of Cretaceous freshwater-continental deposits. The lower part of these deposits refers to the Jurassic, while the upper part corresponds to the Cretaceous. The lower Cretaceous layers are comprised of conglomerates, sandstones, aleurites, slates and strata of brown coal, whereas the upper layers include boulder beds, shingle, sands and clays of the Mokheiskaya formation. In the central parts of Mongolia Cretaceous deposits are somewhat controlled spatially by deep faults and unconformably lie on the Devonian and Cambrian deposits. Paleogene deposits occur very fragmentarily and are most commonly regarded as Upper Cretaceous−Paleogene deposits, because their detailed partition is unfeasible to date. They are represented by covers of red and variegated-red clays, sandy-shingle deposits and lacustrine clays.Paleogene deposits are characterized by successive link of their composition with the laterite-kaolinite weathering crust. Miocene deposits of the Tankhoi formation are of widespread occurrence on the south-eastern shore of the lake; they were also found at different depths in the course of drilling in the sediments of the Ust-Selenginskaya depression, within the Barguzinskaya depression, and in intermountain depressions of Northern Pribaikalie. In the Dzhida mountainous area and on the Khamar-Daban range, basalt covers, overlaying the watershed areas, belong to the Miocene. On Olkhon Island, deposits of the Tagai formation, which are overlapped with an angular unconformity by deposits of the Sasinskaya formation (Upper Miocene - Lower Pliocene), are referred to the Lower-Middle Miocene. The Upper Pliocene and Eo-pleistocene in most cases compose a single rock mass, which resists dissection. Deposits of this age are registered in South Baikal (Shankhaikhinskaya formation), and in a number of areas of the eastern, western and southern surrounding of the Baikal hollow. On Olkhon Island the Upper Pliocene is represented by clays of the Kharantsy formation. Quaternary formations are characterized by a diversity of lithogenetic and facial types and occupy different geomorphological positions. Most often, the lower half of the profile of the quaternary system clearly shows a thick, complicated sandy layer, while the upper layers of the Pleistocene and Holocene are
Recommended publications
  • Lake Baikal Russian Federation
    LAKE BAIKAL RUSSIAN FEDERATION Lake Baikal is in south central Siberia close to the Mongolian border. It is the largest, oldest by 20 million years, and deepest, at 1,638m, of the world's lakes. It is 3.15 million hectares in size and contains a fifth of the world's unfrozen surface freshwater. Its age and isolation and unusually fertile depths have given it the world's richest and most unusual lacustrine fauna which, like the Galapagos islands’, is of outstanding value to evolutionary science. The exceptional variety of endemic animals and plants make the lake one of the most biologically diverse on earth. Threats to the site: Present threats are the untreated wastes from the river Selenga, potential oil and gas exploration in the Selenga delta, widespread lake-edge pollution and over-hunting of the Baikal seals. However, the threat of an oil pipeline along the lake’s north shore was averted in 2006 by Presidential decree and the pulp and cellulose mill on the southern shore which polluted 200 sq. km of the lake, caused some of the worst air pollution in Russia and genetic mutations in some of the lake’s endemic species, was closed in 2009 as no longer profitable to run. COUNTRY Russian Federation NAME Lake Baikal NATURAL WORLD HERITAGE SERIAL SITE 1996: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following statement at the time of inscription. Justification for Inscription The Committee inscribed Lake Baikal the most outstanding example of a freshwater ecosystem on the basis of: Criteria (vii), (viii), (ix) and (x).
    [Show full text]
  • The Fluvial Geochemistry of the Rivers of Eastern Siberia: I. Tributaries Of
    Geochimica et Cosmochimica Acta, Vol. 62, No. 10, pp. 1657–1676, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00107-0 The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton 1, 1 2 1 YOUNGSOOK HUH, *MAI-YIN TSOI, ALEXANDR ZAITSEV, and JOHN M. EDMONd 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Laboratory of Erosion and Fluvial Processes, Department of Geography, Moscow State University, Moscow, Russia (Received June 11, 1997; accepted in revised form February 12, 1998) ABSTRACT—The response of continental weathering rates to changing climate and atmospheric PCO2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America.
    [Show full text]
  • Sustainable Tourism: Global Challenges and Discovering Russia
    Sustainable Tourism: Global Challenges and Discovering Russia 17 октября 08:00 - 18:00 Arrival and Registration 18:00 - 21:00 Welcome cocktail for conference participants, informal evening program Hotel Radisson Rosa Khutor, Black&Gril bar 18 октября 08:00 - 10:00 Arrival and Registration Hotel Radisson Rosa Khutor 10:00 - 10:30 Keynote speech. A New Age of Discoveries Hall Moscow Moderator Kirill Tokarev, Chief editor, Presenter on the channel, RBC Ecotourism is a new, rapidly-developing industry worldwide. In Russia, ecotourism development goals have been laid out at the highest state level. Ecotourism development holds great promise, presents exciting opportunities and requires a special approach that takes into account the fragility of our natural world, which is a key component of travelers’ expectations and experience. Speakers Vyacheslav Fetisov, State Duma Special Envoy for Interparliamentary and International Public Organizations on the Development of Athletics Sergey Mironov, President, Federation of Sport Tourism of Russia, Deputy of the State Duma Oleg Safonov, Head, Federal Agency for Tourism 10:30 - 12:00 Plenary session. Challenges and Opportunities Hall Moscow Moderator Kirill Tokarev, Chief editor, Presenter on the channel, RBC Sustainable development is the result of concerted efforts by people who find ways to cooperate in today’s fast-paced, complex environment, and who strive to make the world a better place for generations to come. Ecotourism sets a new standard for the industry’s development and raises the bar for everyone involved, from the business community, to the government, environmental agencies and grass-roots movements. Change for the better will not happen on its own accord, and it will not take place without careful planning and diligent efforts founded on mutual respect, partnership and dedicated leadership.
    [Show full text]
  • Chronicles of Nature Calendar, a Long-Term and Large-Scale Multitaxon Database on Phenology
    www.nature.com/scientificdata OPEN Chronicles of nature calendar, DATA DESCRIPTOR a long-term and large-scale multitaxon database on phenology Otso Ovaskainen et al.# We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890–2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for frst spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staf of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change. Background & Summary Phenological dynamics have been recognised as one of the most reliable bio-indicators of species responses to ongoing warming conditions1. Together with other adaptive mechanisms (e.g. changes in the spatial distribution and physiological adaptations), phenological change is a key mechanism by which plants and animals adapt to a changing world2,3. Many studies have documented that in the northern hemisphere, spring events have become earlier whereas autumn events are occurring later than before, mostly due to rising temperatures4–6.
    [Show full text]
  • Pulaskis and Borscht a WTA Member’S Excellent Adventure in Siberia Building Trail Along Lake Baikal
    www.wta.org January–February 2009 » Washington Trails On Trail « The author, bottom left, strikes a pose with fellow volunteers on a trail-building trip with the Great Baikal Trails Association. Volunteers from around the world are pitching in to build a 1,500 trail around Lake Baikal.Photo by Baiba Bertule Pulaskis and Borscht A WTA member’s excellent adventure in Siberia building trail along Lake Baikal For many, many years I had longed to go to days along the China and Mongolia borders to Lake Baikal in Siberia. I wanted to see what Ulan-Ude, about one hour east of Lake Baikal. a fellow writer called a “thesaurus of superla- The train ride was pleasantly relaxing as we tives.” Deepest, at over a mile; most volumi- drank tea, slept, read, and ate blinis and piro- nous, with 20 percent of the world’s non-frozen shki through a landscape of taiga and steppe. freshwater; oldest, at roughly 27 million years; After attending a rally for Lake Baikal, com- and most diverse, with nearly 2,000 endemic plete with a Miss Baikal beauty contest, native species. And now, on September 2, 2008, I was dancers, crooning singers, and motorcycle there, along with my wife, Marjorie, to spend riders, we met our group in Ulan-Ude’s main two weeks building trail along the lake, as part square, under the eyes of the world’s larg- of a volunteer crew working with the Great est Lenin head, 25 feet of the Comrade’s bald Baikal Trail Association (GBTA). Their goal is pate enshrined in metal.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Study on Border Crossing Practices in International Railway Transport
    STUDY ON BORDER CROSSING PRACTICES IN INTERNATIONAL RAILWAY TRANSPORT Bangkok, 2018 This study was prepared by Transport Division ESCAP. The draft of the study was prepared by Mr. Goran Andreev, Consultant, under the supervision of Mr. Sandeep Raj Jain, Economic Affairs Officer, Transport Facilitation and Logistics Section (TFLS), Transport Division. Overall guidance was provided by Mr. Li Yuwei, Director, Transport Division. The study extensively benefited from the visits made by the ESCAP study team to several border crossings (in chronological order): Sukhbaatar (Mongolia), Dong Dang (Viet Nam), Padang Besar (Malaysia), Sarkhas (Islamic Republic of Iran), Rezekne (Latvia). The assistance provided by the railways, customs and other authorities at these border crossings, their officers and staff for the study is duly appreciated. Acknowledgments are also extended to the representatives of Intergovernmental Organisation for International Carriage by Rail (OTIF) and Organisation for Co- operation between Railways (OSJD), for their constructive comments on the draft Study and the contribution in providing valuable inputs on the publication. The views expressed in this guide are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this guide are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations. The designations employed and the presentation of the material in this study do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Mongolia – Russia – China “Economic Corridor”: Ongoing Processes and Implementation Mechanism
    MONGOLIA – RUSSIA – CHINA “ECONOMIC CORRIDOR”: ONGOING PROCESSES AND IMPLEMENTATION MECHANISM ENKHBOLD Vorshilov (Ph.D) Director General Department of Foreign Trade and Economic Cooperation Ministry of Foreign Affairs Program of Mongolia-Russia-China Economic Corridor Third Summit (June 2016, Tashkent) • Leaders of Mongolia, Russia and China signed the Program of China- Mongolia-Russia Economic corridor (32 projects) Fields of Cooperation: • Transportation infrastructure -13 • Cooperation in industrial sector - 2 • Development of border- crossing points - 5 Sponsors: • Cooperation in energy sector - 1 . Government budget • Environment and ecology - 3 . Private sector investment • Education, science and technology cooperation - 3 . PPP • Humanitarian - 3 Financing Sources: • Agriculture - 1 • Health - 1 . Asian Infrastructure Investment Bank . BRICS New Development Bank . Silk Road Fund . Other national and multilateral financial institutions Railway Transit Corridors TSAGAAN Northern NAUSHKI TOLGOI SUKHBAATAR SOLOVEVSK ARTS SUURI Corridor ERDENET BULGAN TAKASHIKEN BICHIGT Eastern Western Corridor Corridor ERLIAN Central Corridor Road Transit Corridors KYAKHTA SOLOVEVSK ALTANBULAG TASHANTA EREENTSAV ULAAN BAISHINT BULGAN TAKASHIKEN BICHIGT AH-4 Eastern Corridor ZAMIIN-UUD ERLIAN AH-3 Trilateral Expert 1st meeting for Economic Corridor Implementation TRILATERAL EXPERT 1ST MEETING • First meeting was held in Beijing on 24 Mar 2017. • Following respective government agencies’ officials from three countries represented; - Ministry of Foreign
    [Show full text]
  • Trans-Baykal (Rusya) Bölgesi'nin Coğrafyasi
    International Journal of Geography and Geography Education (IGGE) To Cite This Article: Can, R. R. (2021). Geography of the Trans-Baykal (Russia) region. International Journal of Geography and Geography Education (IGGE), 43, 365-385. Submitted: October 07, 2020 Revised: November 01, 2020 Accepted: November 16, 2020 GEOGRAPHY OF THE TRANS-BAYKAL (RUSSIA) REGION Trans-Baykal (Rusya) Bölgesi’nin Coğrafyası Reyhan Rafet CAN1 Öz Zabaykalskiy Kray (Bölge) olarak isimlendirilen saha adını Rus kâşiflerin ilk kez 1640’ta karşılaştıkları Daur halkından alır. Rusçada Zabaykalye, Balkal Gölü’nün doğusu anlamına gelir. Trans-Baykal Bölgesi, Sibirya'nın en güneydoğusunda, doğu Trans-Baykal'ın neredeyse tüm bölgesini işgal eder. Bölge şiddetli iklim koşulları; birçok mineral ve hammadde kaynağı; ormanların ve tarım arazilerinin varlığı ile karakterize edilir. Rusya Federasyonu'nun Uzakdoğu Federal Bölgesi’nin bir parçası olan on bir kurucu kuruluşu arasında bölge, alan açısından altıncı, nüfus açısından dördüncü, bölgesel ürün üretimi açısından (GRP) altıncı sıradadır. Bölge topraklarından geçen Trans-Sibirya Demiryolu yalnızca Uzak Doğu ile Rusya'nın batı bölgeleri arasında bir ulaşım bağlantısı değil, aynı zamanda Avrasya geçişini sağlayan küresel altyapının da bir parçasıdır. Bölgenin üretim yapısında sanayi, tarım ve ulaşım yüksek bir paya sahiptir. Bu çalışmada Trans-Baykal Bölgesi’nin fiziki, beşeri ve ekonomik coğrafya özellikleri ele alınmıştır. Trans-Baykal Bölgesinin coğrafi özelliklerinin yanı sıra, ekonomik ve kültürel yapısını incelenmiştir. Bu kapsamda konu ile ilgili kurumsal raporlardan ve alan araştırmalarından yararlanılmıştır. Bu çalışma sonucunda 350 yıldan beri Rus gelenek, kültür ve yaşam tarzının devam ettiği, farklı etnik grupların toplumsal birliği sağladığı, yer altı kaynaklarının bölge ekonomisi için yüzyıllardır olduğu gibi günümüzde de önem arz ettiği, coğrafyasının halkın yaşam şeklini belirdiği sonucuna varılmıştır.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • Subject of the Russian Federation)
    How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country.
    [Show full text]
  • Debris Flow Hazards for Mountain Regions of Russia: Regional Features
    Nat Hazards (2017) 88:S199–S235 DOI 10.1007/s11069-017-2841-3 ORIGINAL PAPER Debris flow hazards for mountain regions of Russia: regional features and key events 1 1 1 Veniamin Perov • Sergey Chernomorets • Olga Budarina • 1 1 Elena Savernyuk • Tatiana Leontyeva Received: 10 December 2016 / Accepted: 21 March 2017 / Published online: 29 March 2017 Ó Springer Science+Business Media Dordrecht 2017 Abstract The total area of debris flow territories of the Russian Federation accounts for about 10% of the area of the country. The highest debris flow activity areas located in Kamchatka-Kuril, North Caucasus and Baikal debris flow provinces. The largest debris flow events connected with volcano eruptions. Maximum volume of debris flow deposits per one event reached 500 9 106 m3 (lahar formed during the eruption of Bezymyanny volcano in Kamchatka in 1956). In the mountains of the Greater Caucasus, the maximum volume of transported debris material reached 3 9 106 m3; the largest debris flows here had glacial reasons. In the Baikal debris flow province, the highest debris flow activity located in the ridges of the Baikal rift zone (the East Sayan Mountains, the Khamar-Daban Ridge and the ridges of the Stanovoye Highland). Spatial features of debris flow processes within the territory of Russia are analyzed, and the map of Debris Flow Hazard in Russia is presented. We classified the debris flow hazard areas into 2 zones, 6 regions and 15 provinces. Warm and cold zones are distinguished. The warm zone covers mountainous areas within the southern part of Russia with temperate climate; rain-induced debris flows are predominant there.
    [Show full text]