POLYMER MODIFICATION BY IMPROVED IRRADIATION TECHNOLOGY T. Seguchi, T. Yagi, S. Ishikawa*, and Y. Sano* MY0001468 Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Takasaki, Gunma, 370-1292 Japan, Fax: (81) 27-346-9687, E-mail:
[email protected] *The Shiyuukai Foundation, The Medical Machinery and Materials Laboratory, Masago, Niigata 950- 2074 Japan, Fax:(81) 25-233-8041 1. INTRODUCTION Irradiation technology for polymer modification has been widely applied; the processing of heat resistant wire and cables, polymer form, shrinkable tube, and so on. These applications are based on the radiation induced crosslinking among polymer chains, and the most of processing has been carried out at ambient temperature in atmosphere. It is known that the radiation induced chemical reactions are affected by the irradiation conditions such as atmosphere, temperature, but those effects are not so considerable problem on the processing for above applications. Recently, it was found that the chemical reactions are much dependent on the irradiation temperature for some polymers. A typical one is polytetrafluoroethylene(PTFE), which is chain scission by irradiation at ambient temperature, but crosslinking at the high temperature as the molten state(1). Another case is polystyrene(PS), which is crosslinking at ambient temperature, but chain scission become predominant above the glass transition temperature®. For engineering plastics as polycarbonate(PC) and polysulfone(PSF), the irradiation effects were widely studied on the point of irradiation temperature. A remarkable change on hardness for PC and PSF was observed at high temperature irradiation. This is a new technology for polymer modification by radiation application. 2.