The Out-Of-India Hypothesis: What Do Molecules Suggest? 687

Total Page:16

File Type:pdf, Size:1020Kb

The Out-Of-India Hypothesis: What Do Molecules Suggest? 687 The Out-of-India hypothesis: What do molecules suggest? 687 The Out-of-India hypothesis: What do molecules suggest? ANIRUDDHA DATTA-ROY and K PRAVEEN KARANTH* Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India *Corresponding author (Email, [email protected]) The remarkable geological and evolutionary history of peninsular India has generated much interest in the patterns and processes that might have shaped the current distributions of its endemic biota. In this regard the “Out-of-India” hypothesis, which proposes that rafting peninsular India carried Gondwanan forms to Asia after the break-up of Gondwana super continent, has gained prominence. Here we have reviewed molecular studies undertaken on a range of taxa of supposedly Gondwanan origin to better understand the Out-of-India scenario. This re-evaluation of published molecular studies indicates that there is mounting evidence supporting Out-of-India scenario for various Asian taxa. Nevertheless, in many studies the evidence is inconclusive due to lack of information on the age of relevant nodes. Studies also indicate that not all Gondwanan forms of peninsular India dispersed out of India. Many of these ancient lineages are confi ned to peninsular India and therefore are relict Gondwanan lineages. Additionally, for some taxa an “Into India” rather than “Out-of-India” scenario better explains their current distribution. To identify the “Out-of-India” component of Asian biota it is imperative that we understand the complex biogeographical history of India. To this end, we propose three oversimplifi ed yet explicit phylogenetic predictions. These predictions can be tested through the use of molecular phylogenetic tools in conjunction with palaeontological and geological data. [Datta-Roy A and Karanth K P 2009 The Out-of-India hypothesis: What do molecules suggest?; J. Biosci. 34 687–697] DOI 10.1007/s12038-009-0057-8 1. Introduction ferry model” was proposed, according to which the rafting Indian plate carried ancient Gondwanan forms to Asia (Mani Peninsular India was part of the Gondwana supercontinent 1974; McKenna 1995; Hedges 2003; Briggs 2003a; Bossuyt about 200 million years ago (mya) (Mani 1974; Briggs et al. 2006). Upon collision with Asia these Gondwanan 1989, 2003a; Hedges 2003). During the Jurassic period, forms dispersed out of India and into Asia (also called approximately 158-160 mya, the Indo-Madgascar plate as “Out-of-India” hypothesis). However, Briggs (2003a) drifted away from East Africa, followed by the separation suggested that peninsular India was not completely isolated of peninsular India from Madagascar around 84-96 mya during its northward journey and that faunal links were (Briggs 2003a). The geomorphological, geological, and maintained with Africa and Madagascar until it collided geophysical data supporting these events have been with the Eurasian plate, at least with respect to salt water discussed in detail by previous workers (Krishnan 1974; resistant faunal elements. Chatterjee and Scotese (1999) also Chatterjee and Scotese 1999; Ali and Aitchison 2008). discussed fossil evidence that supports a Late Cretaceous After the separation from Madagascar, the Indian plate dispersal of dinosaurs and other vertebrates from Africa supposedly underwent a period of isolation for about 30- and Europe. Rage (1996) even depicted an end Cretaceous 40 million years (my), before colliding with the Eurasian arrangement of tectonic plates, in which the northern part plate around 40-50 mya. Given this long period of isolation of peninsular India was attached to the Eurasian plate and experienced by the Indian plate it is expected that the fauna the southern part to the Madagascar plate. Thus the limited and fl ora of peninsular India would be unique and highly fossil data suggests that during its northward journey, the endemic (Kaest 1971). With the collision of the Indian and Indian plate has remained close to Africa and Madagascar Eurasian plates there was exchange of biota between Asia even when it began to contact Eurasia (Briggs 2003a). and peninsular India (Mani 1974). Consequently, the “Biotic Nevertheless, numerous recent molecular phylogenetic Keywords. Gondwanan biogeography; India; molecular dating; molecular phylogeny http://www.ias.ac.in/jbiosci J. Biosci. 34(5), November 2009, 687–697, © IndianJ. Biosci. Academy 34(5), of November Sciences 2009 687 688 Aniruddha Datta-Roy and K Praveen Karanth studies have supported the Out-of-India hypothesis Out-of-India hypothesis, the Gondwanan taxa distributed (see Karanth 2006 and references therein). outside of India should be nested within a clade consisting As mentioned above, since the Indian plate collided of Gondwanan taxa from India. In recent times, molecular with Eurasia, not only did potentially Gondwanan elements phylogenetic approaches have been increasingly used to disperse out of India and into Asia, but also many Asian and address biogeographical problems, such as Gondwanan African elements dispersed into India. Mani (1974) points biogeography. In this paper we review studies undertaken on out that these relatively young intrusive elements are largely a range of taxa of supposedly Gondwanan origin, to better derived from the Indo-Chinese and Malayan subregion understand this remarkable pattern. Additionally, we discuss of tropical Asia. Numerous authors have commented the utility of molecular phylogenetic approaches in the study on the overall faunal similarity between peninsular India of biogeography of the Indian subcontinent given the above and Southeast Asia (Blanford 1901; Hora 1949; Jayaram mentioned requirements. 1949; Mani 1974). This out of Asia and into India scenario has been discussed in mammals based on palaeontological 2. Flora evidence (Clyde et al. 2003). Hora (1949) also discusses the Southeast Asian origin of freshwater, torrential fi shes 2.1 Asian dipterocarps of Western Ghats and their possible dispersal routes. In case of plants, the possibility of an out of Asia and into One of the fi rst plant systems studied explicitly in a India origin has been discussed by Lakhanpal (1970) and phylogenetic framework in order to test for the Out-of- Bande (1992). In this regard, a recent molecular study of India hypothesis were the Asian dipterocarps. Work done freshwater gastropods of supposedly Gondwanan origin is by Dayanandan et al. (1999) on this family revealed that of much relevance (Köhler and Glaubrecht 2007). Results they formed a monophyletic group with the Sarcolaenaceae, from this work indicate that the gastropods of Southern India a tree family endemic to Madagascar. The most likely way are nested within a clade consisting of Southeast Asian taxa. by which the Dipterocarpaceae would have reached the It is clear that this group in fact dispersed out of Asia and Asian mainland is via peninsular India acting as a biotic into India. ferry, followed by dispersal out of India. However, the split Much of the evidence for the Gondwanan origin of some between Malagasy and Indian taxa has not been dated. Thus, Asian biota and the Out-of-India hypothesis is based on more recent transoceanic dispersal cannot be ruled out as fossil data and indirect evidence from species distribution alternative explanation. Transmarine dispersal appears ranges. As has been shown by the gastropod work (Köhler unlikely as these families also share similar ectomycorrhizal and Glaubrecht 2007), extant faunal distributions cannot symbiosis, which is thought to have evolved in their be taken as evidence supporting Gondwanan origin and common ancestor (Ducousso et al. 2004). Ectomycorrhizal Out-of-India hypothesis. Another confounding factor in symbiosis occurs in only 3% of angiosperms. Therefore, it our attempt at understanding Gondwana biogeography is is unlikely that similar mycorrhiza in the two families could the situation wherein classifi cation of a taxonomic group have originated independently. does not correspond to its evolutionary relationship, i.e, when unrelated taxa have be erroneously placed in the same taxonomic group (Karanth 2006). Thus to rigorously 2.2 Crypteroniaceae test these hypotheses the knowledge of phylogenetic relationships of the taxa of interest is vital. The family Crypteroniaceae is distributed in tropical Asia In order to confi rm that a taxonomic group is of and their morphology-based taxonomy suggests affi nities Gondwanan origin and that vicariance due to continental drift with African (western Gondwanan) taxa. This implies that is responsible for its present distribution, three requirements this group may have reached Asia rafting on the drifting must be met. Firstly, the taxonomic group should be Indian plate. Molecular work done by Conti et al. (2002) monophyletic and distributed predominantly in some (if not confi rmed their close relationship with African species all) of the former Gondwanan fragments of South America, and molecular date estimates by Rutschmann et al. Africa, Madagascar, peninsular India and Australia. (2004) suggest that Crypteroniaceae diverged from their Secondly, in the phylogenetic trees of Gondwanan taxa, west Gondwanan sister clade in the early to middle the split between taxa from various Gondwanan fragments Cretaceous. The molecular dates are concordant with an should mirror the sequence of geophysical events that led ancient Gondwanan origin of the Crypteroniaceae, and the to the breakup of the Gondwana. Thirdly, the estimated hypothesis that they were transported by the drifting Indian divergence
Recommended publications
  • Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R
    Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R. J. PANKHURST (CHIEF EDITOR) P. DOYLE E J. GREGORY J. S. GRIFFITHS A. J. HARTLEY R. E. HOLDSWORTH A. C. MORTON N. S. ROBINS M. S. STOKER J. P. TURNER Special Publication reviewing procedures The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted. Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satis- factory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's Book Editors on request. Although many of the books result from meetings, the editors are expected to commission papers that were not pre- sented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book. Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.
    [Show full text]
  • Locating South China in Rodinia and Gondwana: a Fragment of Greater India Lithosphere?
    Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Peter A. Cawood1, 2, Yuejun Wang3, Yajun Xu4, and Guochun Zhao5 1Department of Earth Sciences, University of St Andrews, North Street, St Andrews KY16 9AL, UK 2Centre for Exploration Targeting, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 4State Key Laboratory of Biogeology and Environmental Geology, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China 5Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China ABSTRACT metamorphosed Neoproterozoic strata and From the formation of Rodinia at the end of the Mesoproterozoic to the commencement unmetamorphosed Sinian cover (Fig. 1; Zhao of Pangea breakup at the end of the Paleozoic, the South China craton fi rst formed and then and Cawood, 2012). The Cathaysia block is com- occupied a position adjacent to Western Australia and northern India. Early Neoproterozoic posed predominantly of Neoproterozoic meta- suprasubduction zone magmatic arc-backarc assemblages in the craton range in age from ca. morphic rocks, with minor Paleoproterozoic and 1000 Ma to 820 Ma and display a sequential northwest decrease in age. These relations sug- Mesoproterozoic lithologies. Archean basement gest formation and closure of arc systems through southeast-directed subduction, resulting is poorly exposed and largely inferred from the in progressive northwestward accretion onto the periphery of an already assembled Rodinia. presence of minor inherited and/or xenocrys- Siliciclastic units within an early Paleozoic succession that transgresses across the craton were tic zircons in younger rocks (Fig.
    [Show full text]
  • Comparative Review of Key Licence Terms and Conditions in the Context
    East Africa: Petroleum Province of the 21st Century East Africa Petroleum Province of the 21st Century 24-26 October 2012 The Petroleum Group would like to thank Statoil for their support of this event: Corporate Supporters October 2012 #Eastafrica12 Page 1 East Africa: Petroleum Province of the 21st Century Conference Sponsors October 2012 #Eastafrica12 Page 2 East Africa: Petroleum Province of the 21st Century CONTENTS PAGE Conference Programme Pages 4 - 6 Oral Presentation Abstracts Pages 7 – 106 Poster Presentation Abstracts Pages 107 - 109 Fire and Safety Information Pages 110 - 111 October 2012 #Eastafrica12 Page 3 East Africa: Petroleum Province of the 21st Century PROGRAMME Wednesday 24 October 08.30 Registration 09.00 Welcome Session 1: Regional Perspectives 09.15 Keynote Speaker: François Guillocheau (Université Rennes) Palaeogeographic Evolution of East Africa from Carboniferous to Present-Day: Deformation and Climate Evolutions 10.00 John G. Watson (Fugro Robertson International) The Evolution of Offshore East African Margins and Intracontinental East African Rift: A Combined Rigid/Deformable Tectonic Reconstruction 10.30 Peter Purcell (P&R Geological Consultants) Oil and Gas Exploration in East Africa: Past Trends and Future Challenges 11.00 Break 11.30 Keynote Speaker: Jim Harris (Fugro Robertson International) The Palaeogeographic and Palaeo-Climatic History of East Africa: The Predictive Mapping of Source and Reservoir Facies 12.15 Paul Markwick (Getech) The Evolution of East African Rivers Systems, Tectonics and Palaeogeography Since the Late Jurassic 12.45 Lunch Session 2: Regional Perspectives 14.00 Keynote Speaker: Ian Davison (Earthmoves) Geological History and Hydrocarbon Potential of the East African Continental Margin 14.45 Nick J.
    [Show full text]
  • Implications to the Late Cretaceous Plate Tectonics Between India and Africa M
    Author version: Mar. Geol., vol.365; 2015; 36-51 Re-examination of geophysical data off Northwest India: Implications to the Late Cretaceous plate tectonics between India and Africa M. V. Ramana1, Maria Ana Desa*,2 and T. Ramprasad2 1 Mauritius Oceanographic Institute, Victoria Avenue 230 427 4434 Mauritius 2 CSIR-National Institute of Oceanography, Dona Paula, Goa, India-403 004 * Corresponding author, Email: [email protected] Tel: 91-832-2450428 Fax: 91-832-2450609 ABSTRACT The Gop and Laxmi Basins lying off Northwest India have been assigned ambiguous crustal types and evolution mechanisms. The Chagos-Laccadive Ridge (CLR) complex lying along the southwest coast of India has been attributed different evolutionary processes. Late Cretaceous seafloor spreading between India and Africa formed the Mascarene Basin, and the plate reconstruction models depict unequal crustal accretion in this basin. Re-interpretation of magnetic data in the Gop and Laxmi Basins suggests that the underlying oceanic crust was accreted contemporaneously from 79 Ma at slow half spreading rates (0.6 to 1.5 cm/yr) separating the Seychelles-Laxmi Ridge complex from India. The spreading ridge became extinct at 71 Ma in the central region between 19-20°N and 65.5-67°E, and at 68.7 Ma in the Gop Basin. Extinction progressed southwards with time until 64.1 Ma at ~14.5°N in the Laxmi Basin. This spreading probably limited the seafloor spreading in the northern Mascarene Basin, while normal to fast spreading continued in the south. The fracture zone FZ2 acted as a major boundary between the northern and southern Mascarene Basin, and may have also restricted the southward propagation of the Laxmi Basin spreading ridge.
    [Show full text]
  • Biogeographic Mechanisms Involved in the Colonization Of
    Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways Judith Masters, Fabien Génin, Yurui Zhang, Romain Pellen, Thierry Huck, Paul Mazza, Marina Rabineau, Moctar Doucouré, Daniel Aslanian To cite this version: Judith Masters, Fabien Génin, Yurui Zhang, Romain Pellen, Thierry Huck, et al.. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. Journal of Biogeography, Wiley, 2020, 48 (4), pp.492 - 510. 10.1111/jbi.14032. hal- 03079038 HAL Id: hal-03079038 https://hal.archives-ouvertes.fr/hal-03079038 Submitted on 17 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 1 April 2020 | Revised: 16 October 2020 | Accepted: 29 October 2020 DOI: 10.1111/jbi.14032 SYNTHESIS Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways Judith C. Masters1,2 | Fabien Génin3 | Yurui Zhang4 | Romain Pellen3 | Thierry Huck4 | Paul P. A. Mazza5 | Marina Rabineau6 | Moctar Doucouré3 | Daniel Aslanian7 1Department of Zoology & Entomology, University of Fort Hare, Alice, South Africa Abstract 2Department of Botany & Zoology, Aim: For 80 years, popular opinion has held that most of Madagascar's terrestrial Stellenbosch University, Stellenbosch, South vertebrates arrived from Africa by transoceanic dispersal (i.e.
    [Show full text]
  • Destruction of the North China Craton
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257684968 Destruction of the North China Craton Article in Science China Earth Science · October 2012 Impact Factor: 1.49 · DOI: 10.1007/s11430-012-4516-y CITATIONS READS 69 65 6 authors, including: Rixiang Zhu Yi-Gang Xu Chinese Academy of Sciences Chinese Academy of Sciences 264 PUBLICATIONS 8,148 CITATIONS 209 PUBLICATIONS 7,351 CITATIONS SEE PROFILE SEE PROFILE Tianyu Zheng Chinese Academy of Sciences 62 PUBLICATIONS 1,589 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Yi-Gang Xu letting you access and read them immediately. Retrieved on: 26 May 2016 SCIENCE CHINA Earth Sciences Progress of Projects Supported by NSFC October 2012 Vol.55 No.10: 1565–1587 • REVIEW • doi: 10.1007/s11430-012-4516-y Destruction of the North China Craton ZHU RiXiang1*, XU YiGang2, ZHU Guang3, ZHANG HongFu1, XIA QunKe4 & ZHENG TianYu1 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3 School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; 4 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China Received March 27, 2012; accepted June 18, 2012 A National Science Foundation of China (NSFC) major research project, Destruction of the North China Craton (NCC), has been carried out in the past few years by Chinese scientists through an in-depth and systematic observations, experiments and theoretical analyses, with an emphasis on the spatio-temporal distribution of the NCC destruction, the structure of deep earth and shallow geological records of the craton evolution, the mechanism and dynamics of the craton destruction.
    [Show full text]
  • Terminal Suturing of Gondwana Along the Southern Margin of South China Craton: Evidence from Detrital Zircon U-Pb Ages and Hf Is
    PUBLICATIONS Tectonics RESEARCH ARTICLE Terminal suturing of Gondwana along the southern 10.1002/2014TC003748 margin of South China Craton: Evidence from detrital Key Points: zircon U-Pb ages and Hf isotopes in Cambrian • Sanya of Hainan Island, China was linked with Western Australia in and Ordovician strata, Hainan Island the Cambrian • Sanya had not juxtaposed with South Yajun Xu1,2,3, Peter A. Cawood3,4, Yuansheng Du1,2, Zengqiu Zhong2, and Nigel C. Hughes5 China until the Ordovician • Gondwana terminally suture along the 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of southern margin of South China Geosciences, Wuhan, China, 2State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, China, 3Department of Earth Sciences, University of St. Andrews, St. Andrews, UK, Supporting Information: 4Centre for Exploration Targeting, School of Earth and Environment, University of Western Australia, Crawley, Western • Readme Australia, Australia, 5Department of Earth Sciences, University of California, Riverside, California, USA • Figure S1 • Figure S2 • Table S1 • Table S2 Abstract Hainan Island, located near the southern end of mainland South China, consists of the Qiongzhong Block to the north and the Sanya Block to the south. In the Cambrian, these blocks were Correspondence to: separated by an intervening ocean. U-Pb ages and Hf isotope compositions of detrital zircons from the Y. Du, Cambrian succession in the Sanya Block suggest that the unit contains detritus derived from late [email protected] Paleoproterozoic and Mesoproterozoic units along the western margin of the West Australia Craton (e.g., Northampton Complex) or the Albany-Fraser-Wilkes orogen, which separates the West Australia and Citation: Mawson cratons.
    [Show full text]
  • The Walking Whales
    The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press The Walking Whales The Walking Whales From Land to Water in Eight Million Years J. G. M. “Hans” Thewissen with illustrations by Jacqueline Dillard university of california press University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. University of California Press Oakland, California © 2014 by The Regents of the University of California Library of Congress Cataloging-in-Publication Data Thewissen, J. G. M., author. The walking whales : from land to water in eight million years / J.G.M. Thewissen ; with illustrations by Jacqueline Dillard. pages cm Includes bibliographical references and index. isbn 978-0-520-27706-9 (cloth : alk. paper)— isbn 978-0-520-95941-5 (e-book) 1. Whales, Fossil—Pakistan. 2. Whales, Fossil—India. 3. Whales—Evolution. 4. Paleontology—Pakistan. 5. Paleontology—India. I. Title. QE882.C5T484 2015 569′.5—dc23 2014003531 Printed in China 23 22 21 20 19 18 17 16 15 14 10 9 8 7 6 5 4 3 2 1 The paper used in this publication meets the minimum requirements of ansi/niso z39.48–1992 (r 2002) (Permanence of Paper). Cover illustration (clockwise from top right): Basilosaurus, Ambulocetus, Indohyus, Pakicetus, and Kutchicetus.
    [Show full text]
  • Earth History
    Earth History Geography 106 LRS Doug Fischer Introduction – Overview of geologic history • Plate positions over time • Major biogeographic events Earth’s tectonic history • Gondwanaland – Southern continents – Formed 650mya Precambrian • Laurasia – Northern Continents – Most converged in Devonian 400mya as “old sandstone continent” • Formation of Pangaea – Late Permian ~ 275 mya Breakup of Pangaea • Started 180 mya (early Jurassic) – Prior to breakup, great mixing of biota – However, regionalization did still occur as it does on (smaller) continents today Breakup of Laurasia • Separated Europe & N. America 100 mya • Beringia rejoined them 75 mya • Intermittent connection via Greenland & Beringia through Tertiary Breakup of Gondwanaland • 180-160mya Gondwanaland started to split – Mesozoic (Triassic/Jurassic) • Mostly finished by 90 mya 152 mya 94 mya Central America and Antilles • Caribbean Plate was sandwiched between N&S America between 80 and 20 mya • Formed ring of islands • Landbridge closed ~ 3.5 mya – Great American Interchange 14 mya Biogeographic consequences of plate tectonics • Fragmentation and dispersal of ancestral biota (vicariance) • Changing barriers and coridors – biotic interchange • Speciation and extinction – changing physical and biological conditions Tour of Geologic History The geologic time scale • Phanerozoic starts with Cambrian explosion of species with hard body parts – (Some multi- cellular algae and animals lived at the end of the Precambrian) Paleozoic Paleozoic Cambrian • Animals with hard-shells appeared in great numbers for the first time • The continents were flooded by shallow seas. • The supercontinent of Gondwana had just formed and was located near the South Pole. Ordivician • ancient oceans separated the barren continents of Laurentia, Baltica, Siberia and Gondwana. • The end of the Ordovician was one of the coldest times in Earth history.
    [Show full text]
  • (India) and Yangtze Block (South China): Paleogeographic Implications
    Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications Ganqing Jiang* Department of Earth Sciences, University of California, Riverside, California 92521, USA Linda E. Sohl Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Nicholas Christie-Blick Columbia University, Palisades, New York 10964-8000, USA ABSTRACT terpreted to correspond with a level within the Recent studies of terminal Neoproterozoic rocks (ca. 590±543 Ma) in the Lesser Him- glaciogenic interval (Fig. 2). A passive- alaya of northwestern India and the Yangtze block (south China) reveal remarkably sim- margin setting is inferred with con®dence for ilar facies assemblages and carbonate platform architecture, with distinctive karstic un- postglacial carbonate rocks on the basis of conformities at comparable stratigraphic levels. These similarities suggest that south platform scale, comparatively simple physical China may have been located close to northwestern India during late Neoproterozoic time, stratigraphic and facies architecture, and the an interpretation permitted by the available, yet sparse paleomagnetic data. Additional thickness of successions, with no evidence for parallels in older rocks of both blocksÐsimilar rift-related siliciclastic-volcanic successions either syndepositional tectonism or igneous overlying metamorphic basement, and comparable glaciogenic intervals of possibly Stur- activity. Figure 2 summarizes pertinent litho- tian and Marinoan
    [Show full text]
  • Gondwana Reconstruction Using Gplates
    Gondwana reconstruction using GPlates Fossils and Tectonics in a deep-time Geographic Information Systems platform Dr Sabin Zahirovic, The University of Sydney ([email protected]) Preamble The Theory of Plate Tectonics represents the unifying concept in Earth sciences. Modern tools have allowed us to leverage advanced computational methods, Geographic Information Systems (GIS), and decades of data collection to build digital representations of Earth’s tectonic evolution. These “plate tectonic reconstructions” are used in a wide array of disciplines ranging from inputs for climate models (as arrangements of continents and ocean basins affect albedo, ocean currents, etc.), biological evolution (evolving land bridges and seaways responsible for the dispersal of plants and animals), and natural resources (tectonism as the primary mechanism for focusing ore bodies). There is an ongoing effort to unify plate motions on the surface and Earth’s convecting mantle, with an ultimate aim of creating a “Digital Twin” of our planet to interrogate and understand planetary processes for basic science and industry. As part of your undergraduate training, you will be exposed to these principles of applying Geographic Information System (GIS) science to geological and deep-time problems. At the School of Geosciences, we develop the global standard in deep-time GIS, and it is used in education, research, and industry. This software is called GPlates (www.gplates.org), and it is open-source (free for everyone to use/modify) and cross-platform (can be easily installed on macOS, Linux, Windows). You will use GPlates and a range of data to reconstruct the arrangement of the Gondwana mega-continent prior to breakup in the Cretaceous.
    [Show full text]
  • The Earth's Lithosphere-Documentary
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2.
    [Show full text]